Fundamentos de Bases de Datos NoSQL
NoSQL: El Otro Tipo de Bases de Datos
¿Qué debo elegir? NoSQL vs SQL
Manipulación de Datos en MongoDB
Tus primeros pasos con MongoDB
Creación de Documentos en MongoDB
Uso de la Consola de MongoDB: Creación de Datos con insertOne e insertMany
Eliminar Documentos en MongoDB
Cómo Leer Documentos en MongoDB con find()
Consultas Avanzadas en MongoDB: Dominando el Framework de Agregación
Cómo Eliminar Datos en MongoDB
Operaciones avanzadas de reemplazo en MongoDB
Cómo Actualizar Documentos en MongoDB
Tipos de Bases de Datos NoSQL
Bases de Datos de Grafos: Conceptos y Aplicaciones Prácticas
Bases de Datos de Grafos: Ejercicios y Casos de Uso
Introducción a las Bases de Datos basadas en Documentos
Introducción a las Bases de Datos Clave-Valor
Introducción a las Bases de Datos Vectoriales
Pasos Futuros
Alcances y Beneficios de NoSQL
You don't have access to this class
Keep learning! Join and start boosting your career
Vector databases are essential for solving complex problems such as personalized recommendations and frequently asked questions with language variations. These systems use mathematical representations to store and process information efficiently.
A vector is the representation of an array, an element with a data structure containing several specific values. These values are generally numbers ranging from -1 to 1, and represent information such as text, images, sound or video.
The values of a vector are generated by an encoder, a machine learning tool that transforms the original information into numerical values. This process creates what is called an embedding, essential for image, sound or natural language processing.
The semantic value of a vector reflects the meaning of the information it represents. For example, in natural language processing, keywords, articles and rare words are identified by assigning different weights according to their importance in context. This allows the vectors to effectively represent the intent and meaning of the text.
Vectors with similar semantic values are grouped closely together. For example, the words "king" and "queen" will be close together in vector space because of their semantic similarities. Similarly, "man" and "woman" will be close to each other and will show similarity relationships with "king" and "queen" based on their semantic context.
The direction of a vector indicates its similarity to other vectors. Vectors pointing in similar directions share semantic characteristics. This principle is fundamental to recommendation algorithms and search systems that rely on relationships between different types of information.
Contributions 5
Questions 0
Want to see more contributions, questions and answers from the community?