NumPy
Fundamentos para Análisis de Datos en NumPy y Pandas
Dimensiones en NumPy y Pandas: De Escalares a Tensors
Arrays en NumPy
Introducción al álgebra lineal con NumPy
Indexación y Slicing
Broadcasting y Operaciones Lógicas en NumPy
Elementos Únicos y sus Conteos: Copias y Vistas
Transformación de Arrays: Reshape y Manipulación
Caso Práctico de Análisis de Datos
Cálculos Matriciales en NumPy
Ejercicios en NumPy
Pandas
Pandas para Manipulación de Datos
Creación de Dataframes en Pandas
Estructuras de Datos en Pandas y Funciones
Uso de iloc y loc en Pandas
Manejo de Datos Faltantes en Pandas
Creación y Manipulación de Columnas en Pandas
Agrupaciones con groupby
Filtrado de datos con condiciones en Pandas
Reestructuración de datos: Pivot y Reshape en Pandas
Fusión de DataFrames en Pandas
Manejo de Series Temporales en Pandas
Matplotlib
Introducción a Matplotlib gráfico de líneas y dispersión
Personalización de Gráficos en Matplotlib
Gráficos de Barras y Diagramas de Pastel
Gráficos de Histograma y Boxplot para distribuciones
Series de tiempo y manejo de fechas con Matplotlib
Subplots y Layouts Avanzados
Proyecto de Análisis de Datos de Retail
Caso de Estudio (Parte I). Limpieza de datos
Caso de Estudio (Parte II). Creación de columnas
Caso de Estudio (Parte III). Graficación y análisis de resultados
Proyecto Final: Creación de Portafolio de Análisis de Datos
In today's streaming media environment, improving recommendations and understanding what types of content are most popular is critical to a company's success. Analyzing viewing patterns of millions of users represents a huge challenge due to the sheer amount of data that must be processed on a daily basis. Fortunately, there are powerful tools in Python that facilitate this process: Our allies are NumPy and Pandas, libraries that allow you to handle large volumes of data efficiently and accurately.
NumPy is essential when working with large data sets, as it allows you to perform high-performance mathematical and statistical operations. By using NumPy, you can efficiently handle operations on arrays, which is crucial in large-scale analysis. This translates into:
Pandas is a tool built on top of NumPy that makes it easy to manipulate and analyze data quickly and easily, especially when working with tabular data. Here are some key benefits:
DataFrames
, which facilitate the analysis and understanding of your data for fact-based decision making.Pandas not only improves efficiency, but also opens doors to new job opportunities in data analytics, business intelligence, machine learning and data science.
Throughout the course, we will develop a realistic project analyzing sales data from an online store. This project will serve to put into practice what you have learned and will be a valuable addition to your professional portfolio.
For the course, we will use Google Collaboratory, but if you prefer, you can use other environments such as Visual Studio Code. Make sure you have the necessary libraries installed: NumPy and Pandas. Here we show you how to do it:
# NumPy and Pandas installation!pip install numpy pandas
After installation, import the libraries into your working environment:
# Importing librariesimport numpy as npimport pandas as pd.
Remember that the standard notation is to import NumPy as np
, facilitating its use throughout the analysis.
This course will not only provide you with technical skills but will also prepare you to face real challenges in data analysis. Keep learning with enthusiasm, hone your skills and get ready to excel in the job market!
Contributions 30
Questions 5
Want to see more contributions, questions and answers from the community?