NumPy
Fundamentos para Análisis de Datos en NumPy y Pandas
Dimensiones en NumPy y Pandas: De Escalares a Tensors
Arrays en NumPy
Introducción al álgebra lineal con NumPy
Indexación y Slicing
Broadcasting y Operaciones Lógicas en NumPy
Elementos Únicos y sus Conteos: Copias y Vistas
Transformación de Arrays: Reshape y Manipulación
Caso Práctico de Análisis de Datos
Cálculos Matriciales en NumPy
Ejercicios en NumPy
Pandas
Pandas para Manipulación de Datos
Creación de Dataframes en Pandas
Estructuras de Datos en Pandas y Funciones
Uso de iloc y loc en Pandas
Manejo de Datos Faltantes en Pandas
Creación y Manipulación de Columnas en Pandas
Agrupaciones con groupby
Filtrado de datos con condiciones en Pandas
Reestructuración de datos: Pivot y Reshape en Pandas
Fusión de DataFrames en Pandas
Manejo de Series Temporales en Pandas
Matplotlib
Introducción a Matplotlib gráfico de líneas y dispersión
Personalización de Gráficos en Matplotlib
Gráficos de Barras y Diagramas de Pastel
Gráficos de Histograma y Boxplot para distribuciones
Series de tiempo y manejo de fechas con Matplotlib
Subplots y Layouts Avanzados
Proyecto de Análisis de Datos de Retail
Caso de Estudio (Parte I). Limpieza de datos
Caso de Estudio (Parte II). Creación de columnas
Caso de Estudio (Parte III). Graficación y análisis de resultados
Proyecto Final: Creación de Portafolio de Análisis de Datos
You don't have access to this class
Keep learning! Join and start boosting your career
Learning to transpose and transform arrays, invert arrays and flatten multidimensional arrays are essential skills for handling large volumes of data and performing complex calculations efficiently. Using the NumPy library in Python, these operations are not only easy to implement but also highly optimized for working with large data sets.
The transpose of a matrix is an operation that swaps its rows and columns, essential in linear algebra and scientific data manipulation. In NumPy, you can transpose a matrix using matrix.T, which converts rows into columns and vice versa.
import numpy as npmatrix = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) transposed_matrix = matrix.Tprint("Original matrix:\n", matrix)print("Transposed matrix:\n", transposed_matrix)
The reshape
function allows you to change the shape of an array without changing its data. It is important to make sure that the total number of elements remains constant.
For example, an array of 12 elements can be reshaped into a 3x4, 4x3, 2x6, etc. array, but not into a 5x3 array.
# Create an array with the numbers 1 to 12array = np.arange(1, 13)# Change the shape of the array to a 3-row, 4-column arrayreshaped_array = array.reshape(3, 4) print("Original array:", array) print("Array reshaped to 3x4:\n", reshaped_array)
np.arange(1, 13)
creates a one-dimensional array of 12 elements.array.reshape(3, 4)
reshapes this array into a 3-row, 4-column array. The total number of elements (12) must be the same before and after reshaping.Make sure that the total number of elements in the new shape matches the total number of elements in the original array. Otherwise, a ValueError
will occur .
In signal processing and data inversion algorithms, it is very common to invert an array, which involves changing the order of its elements so that the first element becomes the last and vice versa.
# Create an array with the numbers 1 to 5array = np.array([1, 2, 3, 4, 5]) # Invert the arrayreversed_array = array[::-1]print("Original array:", array)print("Reversed array:", reversed_array)
array[::-1]
Reverses the array using slicing. array[start:stop:step]
is the general notation for slicing in Python, where start
is the initial index, stop
is the final (excluded) index, and step
is the step size. By omitting start
and stop
and using 1 as step
, you get a copy of the array in reverse order.
You should always make sure that the start, stop
, and step
indexes are set correctly to avoid indexing errors.
Array flattening is the process of converting a multidimensional array into a one-dimensional array, useful in algorithms that require linear input or for aggregation operations. In NumPy, you can flatten an array using flatten()
.
# Create a 2Darray multi_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) # Flatten the 2Darray to 1Dflattened_array = multi_array.flatten()print("Multidimensional array:\n", multi_array)print("Flattened array:", flattened_array)
multi_array.flatten()
converts a 2D array into a 1D array, essentially "flattening" the multidimensional structure. This is useful for algorithms that require one-dimensional input or to facilitate aggregation operations.
The flatten()
operation always creates a copy, so you should make sure this is what you want to avoid memory problems.
Contributions 9
Questions 0
Want to see more contributions, questions and answers from the community?