Fundamentos de los Agentes Inteligentes y LangChain
Introducción a LangChain
Agiliza procesos usando Agentes AI
Agentes inteligentes de LangChain
Instalación y configuración de LangChain
Quiz: Fundamentos de los Agentes Inteligentes y LangChain
Chat Models y Prompt templates
Chat Messages con OpenAI
Introducción a los modelos de chat
Output parsers
Prompt templates en LangChain
Tipos de ChatTemplates: Few-Shot Prompting
Quiz: Chat Models y Prompt templates
Cadenas en LangChain
Introducción a Chains y LCEL
Chat con historial
Integración de cadena: Runnable y OutputParser
Chat Memory
Implementación de memoria en cadenas
Quiz: Cadenas en LangChain
Carga de documentos en LangChain
Cargar HTML y Directorio con LangChain
Carga de PDF y CSV con LangChain
Text Splitters
Quiz: Carga de documentos en LangChain
Retrieval-augmented generation (RAG)
VectorStore: Chroma
Introducción a Embeddings
Vectorstore: Pinecone
Chatbot RAG: carga de documentos a Vectorstore
Chatbot RAG: prompt templates, cadenas y memoria
Quiz: Retrieval-augmented generation (RAG)
Agentes en LangChain
Construcción de agentes en LangChain
LangChain Tools
Construcción de agentes con memoria
Quiz: Agentes en LangChain
Ecosistema de LangChain
Ecosistema de LangChain
You don't have access to this class
Keep learning! Join and start boosting your career
In the fascinating world of artificial intelligence, language models alone do not guarantee the development of advanced applications. To create robust and scalable solutions, we need tools that allow us to efficiently monitor, debug and deploy our applications. Langchain, Langsmith and Langraph emerge as essential components in this process, offering a complete ecosystem for advanced AI development.
Langchain is the first step in the design of AI-based applications, providing the necessary fundamental structure through the integration of various tools:
With Langchain, the skeleton of the project is built, but to evolve to a final and functional product, more actions need to be carried out.
Langraph takes creation to production with an innovative approach based on graphs and cloud operation:
The use of Landgraph facilitates collaboration between different agents and ensures persistence of data and actions, improving workflow efficiency.
Langsmith focuses on monitoring, debugging and continuous evaluation of application performance:
These Langsmith capabilities are crucial to ensure the quality and success of AI projects, from development to deployment in production environments.
A crucial aspect of successful development is choosing technologies that align with your team's capabilities and resources. Langchain, Langsmith and Langraph offer flexibility to integrate resources from different services, such as Amazon or Azure, expanding development and deployment possibilities.
The tools discussed are powerful allies that, when combined, allow you to maximize the potential of language models and create advanced and innovative applications. Collaboration and persistence are enhanced, increasing the productivity and efficiency of artificial intelligence projects.
So why not get started? Explore these tools, look for alternatives if necessary, and take your AI projects to a whole new level.
Contributions 6
Questions 0
Want to see more contributions, questions and answers from the community?