Entornos virtuales con Anaconda y pip
驴Qu茅 son los entornos virtuales?
Instalaci贸n de Anaconda
Conda: creaci贸n de entornos virtuales desde terminal
Conda: eliminar entornos virtuales y paquetes
Conda: actualizaci贸n, clonaci贸n y exportaci贸n de entornos
Manejo de entornos virtuales desde Anaconda Navigator
Quiz: Entornos virtuales con Anaconda y pip
Uso de Jupyter Notebook y JupyterLab
Jupyter Notebooks desde Anaconda
Comandos m谩gicos de Jupyter Notebooks
Control de versiones en Notebooks
JupyterLab
Configuraci贸n de Notebooks en Visual Studio Code
Navegaci贸n de Notebooks en Visual Studio Code
Quiz: Uso de Jupyter Notebook y JupyterLab
Proyectos con Cookiecutter
conda-forge
Proyectos de Data Science y Machine Learning con Cookiecutter
Crear plantillas de proyecto personalizadas
Implementar hooks
Quiz: Proyectos con Cookiecutter
Estructura de entorno en proyectos
M煤ltiples entornos en un proyecto de Data Science
You don't have access to this class
Keep learning! Join and start boosting your career
Jupyter Notebooks has transformed the way we interact with code by enabling an interactive environment where you can combine programming, data visualization and descriptive text in a single document. Originating from the combination of Julia, Python and R languages, Jupyter has gained relevance in data science. Its benefits include:
Starting Jupyter Notebooks from Anaconda is a simple process done from the terminal. Follow these steps to get started:
jupyter notebook
. This will open the Jupyter page in your web browser.# Example of code in a Jupyter cell Notebookprint("Hello, World")
One of the key features of Jupyter is the ability to save and share notebooks in different formats:
Working with data is essential in Jupyter Notebooks. You can load and manipulate data files such as CSVs using popular libraries such as Pandas:
import pandas as pd
# Loading a CSV filedata = pd.read_csv('data.csv')print(data.head())
To upload files, you can use the "Upload" option in Jupyter and make sure that the file is in the root directory or where the notebook is.
Managing virtual environments in Anaconda allows you to keep projects organized and avoid dependency conflicts. Here's how to do it:
conda create -n environment_name
to create a new environment.conda activate environment_name
.conda install jupyter
.conda install package_name
.If you encounter an error when executing code that requires a non-installed library, such as NumPy or Matplotlib, within a virtual environment, it will be necessary to install it:
conda install numpy matplotlib
And so, you can try to run your code again. You will achieve an optimal configuration for working with different data science projects in Jupyter Notebooks.
Contributions 7
Questions 0
Want to see more contributions, questions and answers from the community?