You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

1 D铆as
11 Hrs
22 Min
35 Seg

Jupyter Notebooks desde Anaconda

7/17
Resources

What is Jupyter Notebooks and why is it relevant to data science?

Jupyter Notebooks has transformed the way we interact with code by enabling an interactive environment where you can combine programming, data visualization and descriptive text in a single document. Originating from the combination of Julia, Python and R languages, Jupyter has gained relevance in data science. Its benefits include:

  • Combined documentation and execution: Creates clear, reproducible reports in the same file.
  • Real-time visualizations: Run the code and visualize the results immediately.
  • Interactive environments: Experiment with small blocks of code in an interactive cycle known as REPL (Read, Eval, Print, Loop).

How to start and use Jupyter Notebooks from Anaconda?

Starting Jupyter Notebooks from Anaconda is a simple process done from the terminal. Follow these steps to get started:

  1. Start the Jupyter server: In the terminal, run the command jupyter notebook. This will open the Jupyter page in your web browser.
  2. Create a new notebook: Click "New" and select "Python 3" to start a new document.
  3. Interacting with cells: In Jupyter, you can create code or text cells in Markdown. You can easily run code in the cells and rearrange them as needed.
# Example of code in a Jupyter cell Notebookprint("Hello, World")

How to export and share notebooks in different formats?

One of the key features of Jupyter is the ability to save and share notebooks in different formats:

  • Rename the notebook: Before exporting, make sure to rename the file if necessary. This is done at the top of the document.
  • Export the notebook: Go to the "File" tab and select the desired format to download, which can be the default .ipynb format, PDF, or HTML, among others.

How to handle external files and data in Jupyter Notebooks?

Working with data is essential in Jupyter Notebooks. You can load and manipulate data files such as CSVs using popular libraries such as Pandas:

import pandas as pd
 # Loading a CSV filedata = pd.read_csv('data.csv')print(data.head())

To upload files, you can use the "Upload" option in Jupyter and make sure that the file is in the root directory or where the notebook is.

How to create and work in virtual environments with Anaconda?

Managing virtual environments in Anaconda allows you to keep projects organized and avoid dependency conflicts. Here's how to do it:

  1. Create a new environment: Use the command conda create -n environment_name to create a new environment.
  2. Activate the environment: To switch to the new environment, run conda activate environment_name.
  3. Install Jupyter in the environment: If you need to use Jupyter in a new environment, run it using conda install jupyter.
  4. Install necessary libraries: For any additional modules, such as NumPy or Matplotlib, install the necessary libraries using conda install package_name.

What to do if a library is not installed in the environment?

If you encounter an error when executing code that requires a non-installed library, such as NumPy or Matplotlib, within a virtual environment, it will be necessary to install it:

conda install numpy matplotlib

And so, you can try to run your code again. You will achieve an optimal configuration for working with different data science projects in Jupyter Notebooks.

Contributions 7

Questions 0

Sort by:

Want to see more contributions, questions and answers from the community?

En la versi贸n de conda en linux al parecer no est谩 instalado jupyter notebooks por defecto por lo que se debe instalar en el ambiente en el que se est谩 trabajando: `conda install notebook`
Ventajas de Jupyter Notebook para Ciencia de Datos: 路 Documentaci贸n y ejecuci贸n combinadas 路 Visualizaciones en tiempo real (inline) 路 Entornos interactivos para probar l铆neas o bloques de c贸digo (ciclo REPL) 路 Facilita la escritura y depuraci贸n de c贸digo El ciclo REPL lo ejecuta la Notebook (permite escribir, ejecutar y mostrar resultados del c贸digo de manera inmediata): 路 R (leer el c贸digo), 路 E(evaluar o ejecutar el c贸digo), 路 P(imprimir o mostrar la salida del c贸digo), 路 L(bucle o repetir el proceso con m谩s c贸digo),
por si para alguien no fue tan straigth forward cuando yo corri el comando me abrio una terminal que jamas habia visto tilixTerminal igual entre por localhost 8888 en el browser de windows, y me pidio un token, corri el comando jupyter server list y copie y pegue el token en campo que la pagina me pedia .
Hola, para poder conectarse, aparte de la direcci贸n localhost y el puerto 8888, se necesita un token key. El enlace completo aparece en la informaci贸n mostrada en la secci贸n To access the server, open this file in a browser: ```jsx ```
muy buen curso!!! muy 煤til para ser organizados y para trabajar en un ambiente laboral de forma organizada
隆Buena pregunta! La accesibilidad para lectores de pantalla var铆a entre Jupyter Notebooks, Anaconda, Google Colab y VSCode. Aqu铆 tienes un resumen de cada uno: 1\. \*\*Jupyter Notebooks\*\*: Actualmente, Jupyter Notebooks no son muy accesibles para lectores de pantalla: So how accessible are (Jupyter) notebooks for screen reader ...]\(https://discourse.jupyter.org/t/stream-so-how-accessible-are-jupyter-notebooks-for-screen-reader-users/26505). Hay esfuerzos en curso para mejorar esto, como el proyecto "Notebooks for All", pero a煤n queda mucho por hacer. 2\. \*\*Anaconda\*\*: Anaconda no es espec铆ficamente una herramienta para Jupyter Notebooks, pero al usar Jupyter con Anaconda, enfrentar铆as las mismas limitaciones de accesibilidad que con Jupyter Notebooks. 3\. \*\*Google Colab\*\*: Google Colab ha hecho mejoras en accesibilidad, pero a煤n tiene limitaciones. Por ejemplo, algunas funciones del men煤 no responden bien a las teclas de acceso r谩pido. Sin embargo, es una opci贸n m谩s accesible que Jupyter Notebooks. 4\. \*\*VSCode\*\*: Visual Studio Code (VSCode) es generalmente considerado m谩s accesible que Jupyter Notebooks y Google Colab. Tiene soporte para lectores de pantalla y permite una navegaci贸n m谩s fluida con el teclado. En resumen, \*\*VSCode\*\* parece ser la opci贸n m谩s accesible para lectores de pantalla, seguido de \*\*Google Colab\*\*. Sin embargo, la accesibilidad puede depender de las preferencias y necesidades espec铆ficas del usuario. att:Copilot
xdg-open: no method available for opening 'file:///home....