Optimización Avanzada en Docker
La importancia de Aprender Docker
Desbloqueando el Poder de Docker
Construcción de Imágenes Multi-stage
Escaneo de imágenes en Docker
Optimización de Imágenes de docker con Distroless
Compilación Multiplataforma
Gestión de Caché y Eficiencia en Builds
Reducción de Dependencias y Minimización de Tamaño
Optimización de Build Context y Reducción de Transferencias
Explorando Docker Hub
Buenas Prácticas en Docker
Uso Eficiente de Capas en Imágenes Docker
Uso de .dockerignore para Optimización
Eliminación de Archivos Temporales y Residuos en Docker
Agrega usuarios a tu imagen de docker
Mejores Prácticas para Construcción de Imágenes
Instalación y Configuración en Entornos Multiplataforma
Despliegue de Docker en Azure y Entornos Locales
Publicar tu imagen a Container Apps de Azure
Redes Avanzadas y Balanceo de Carga
Modelos de Red en Docker
Exposición y Publicación de Puertos en Docker
Balanceo de Carga con Docker
Automatización de CI/CD
Ejecución de Scripts Multi-line en Docker
Automatización de CI/CD con Docker
Estrategias Avanzadas de CI/CD en Docker
Publicando mi imagen de docker a la nube con CI/CD
Orquestación
Retomando Docker Compose
Secciones en un archivo Docker Compose
Agregando volúmenes con Docker Compose
Secuencia de apagado
Introducción a Docker Swarm
Replicación de Stacks con Docker Compose
De Docker a la nube
Orquestadores de contenedores
Costos de Docker
Develop
Introducción a los devcontainers
You don't have access to this class
Keep learning! Join and start boosting your career
Creating efficient Docker images is essential for any developer or technology professional looking to optimize their applications and working environments. Here's how you can start creating images that are not only functional, but also lightweight and easy to maintain.
When starting to create images with Docker, the main goal is to keep the Dockerfile as simple as possible. This reduces the chances of errors and makes it easier to manage and update images.
A Dockerfile is a text file that contains all the instructions needed to create a Docker image. For example, for a Python back-end application, the basics would be:
FROM python:3.8WORKDIR /appCOPY . /appRUN pip install -r requirements.txtCMD ["python", "app.py"]
This simple example installs the requirements and copies the files needed to run the application. However, for more complex projects, this simple structure can quickly grow in size.
In larger projects, using Docker with multi-stage builds can be critical. Why? Because it allows you to build smaller, optimized images by selecting only the necessary components.
Let's look at an example with ASP.NET, where Visual Studio creates a multi-stage Dockerfile. An example of a multi-stage Dockerfile could be:
# Stage 1 - Build the applicationFROM mcr.microsoft.com/dotnet/sdk:5.0 AS buildWORKDIR /srcCOPY ["MyApp.csproj", "./"]RUN dotnet restore "MyApp.csproj"COPY . .RUN dotnet build "MyApp.csproj" -c Release -o /app/build
# Stage 2 - Publish the applicationFROM build AS publishRUN dotnet publish "MyApp.csproj" -c Release -o /app/publish
# Stage 3 - Build the runtime imageFROM mcr.microsoft.com/dotnet/aspnet:5.0WORKDIR /appCOPY --from=publish /app/publish .ENTRYPOINT ["dotnet", "MyApp.dll"]
By using multiple stages, we ensure that only the necessary files are included at the end of the process. Dependencies and development files that are not necessary for the deployment of the application are removed.
First the application is compiled, only the assemblies are published and then copied to the final container. This means that the final container size is considerably smaller, which is more efficient for deploying and scaling applications in production.
Implementing these practices allows you to not only reduce the size of images and optimize their use, but also helps improve development time. Upgrades become a simple process, and containerized infrastructure offers greater flexibility and control, which is essential in microservices and devops environments.
By following these practical tips, you can ensure that your projects are agile, efficient and prepared for any technical challenges that come your way - go ahead and continue to explore and optimize the use of Docker in your future developments!
Contributions 8
Questions 0
Want to see more contributions, questions and answers from the community?