Introducción y Visión General de SecureVision AI
Introducción a SecureVision AI y CCTV
Fundamentos de Visión Computarizada en CCTV
Procesamiento de Imágenes y Fundamentos de OpenCV
Introducción a OpenCV para Análisis de CCTV
Creación y Análisis de Heatmaps con OpenCV
Quiz: Procesamiento de Imágenes y Fundamentos de OpenCV
Segmentación de Imágenes con YOLO
Configuración de Modelos Preentrenados para Segmentación con YOLO
Integración de Segmentación en Tiempo Real y Generación de Heatmaps
Quiz: Segmentación de Imágenes con YOLO
Detección de Objetos con YOLO
Introducción a la Detección de Objetos con YOLO
Configuración y Uso de Modelos YOLO Preentrenados
Implementación de un Sistema de Conteo de Personas con YOLO
Quiz: Detección de Objetos con YOLO
Pose Estimation con Mediapipe
Fundamentos de Pose Estimation con Mediapipe
Seguimiento y Análisis de Miradas con Mediapipe
Generación de Heatmap de Miradas con Mediapipe y OpenCV
Quiz: Pose Estimation con Mediapipe
Entrenamiento y Creación de Modelos Personalizados con YOLO
Entrenamiento de un Modelo YOLO para Detectar Defectos en Soldaduras Industriales - Parte 1
Entrenamiento de un Modelo YOLO para Detectar Defectos en Soldaduras Industriales - Parte 2
Etiquetado de Imágenes con Label Studio
Reflexión y Cierre del Curso
You don't have access to this class
Keep learning! Join and start boosting your career
Object detection is a fundamental technology in the field of computer vision, enabling machines to identify and locate specific elements within images or videos. In the context of retail businesses, this capability is invaluable for analyzing customer behavior and optimizing operations. Let's see how to implement a people counting system using Ultralytics object detection models.
Ultralytics offers five different models for object detection, each with specific characteristics that make them more or less suitable depending on the use case. These models vary in size and complexity:
All these models share the same input image size (640x640 pixels), but differ significantly in other aspects:
For environments with limited hardware where some latency can be tolerated, the YOLOv11n model is the most suitable option due to its lower complexity and resource requirements.
To implement object detection using Ultralytics, we need to follow these steps:
The first thing is to install the Ultralytics library in our environment:
# Installing the library!pip install ultralytics
There are two main ways to download the YOLOv11n model:
from ultralytics import YOLO
# Download YOLOv11nmodel model = YOLO('yolov11n').
It is important to note that "YOLO" is capitalized, while "yolov11n" is lowercase.
If the above method fails, we can download the model directly from its URL:
!wget https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov11n.pt
Once the model is downloaded, we can load it directly from the local file:
model = YOLO('yolov11n.pt')
This avoids having to download the model again each time we run our code.
The YOLOv11n model comes pre-trained with the COCO dataset, which allows it to detect 80 common object types, including:
This pre-detection capability makes the model immediately useful for many applications, including people counting in a commercial establishment.
For the specific case of our customer at SecurityVision AI, who already knows how people move around their premises but now needs to count them, the implementation of the YOLOv11n model is ideal.
Benefits of this solution:
Once the model is implemented, we can process video from security cameras to detect and count people in real time, providing valuable information for business decision making.
Object detection with Ultralytics represents a powerful and affordable solution for people counting in commercial environments. Have you ever implemented computer vision systems in your projects? Share your experience in the comments.
Contributions 0
Questions 0
Want to see more contributions, questions and answers from the community?