Introducción y Visión General de SecureVision AI
Introducción a SecureVision AI y CCTV
Fundamentos de Visión Computarizada en CCTV
Procesamiento de Imágenes y Fundamentos de OpenCV
Introducción a OpenCV para Análisis de CCTV
Creación y Análisis de Heatmaps con OpenCV
Quiz: Procesamiento de Imágenes y Fundamentos de OpenCV
Segmentación de Imágenes con YOLO
Configuración de Modelos Preentrenados para Segmentación con YOLO
Integración de Segmentación en Tiempo Real y Generación de Heatmaps
Quiz: Segmentación de Imágenes con YOLO
Detección de Objetos con YOLO
Introducción a la Detección de Objetos con YOLO
Configuración y Uso de Modelos YOLO Preentrenados
Implementación de un Sistema de Conteo de Personas con YOLO
Quiz: Detección de Objetos con YOLO
Pose Estimation con Mediapipe
Fundamentos de Pose Estimation con Mediapipe
Seguimiento y Análisis de Miradas con Mediapipe
Generación de Heatmap de Miradas con Mediapipe y OpenCV
Quiz: Pose Estimation con Mediapipe
Entrenamiento y Creación de Modelos Personalizados con YOLO
Entrenamiento de un Modelo YOLO para Detectar Defectos en Soldaduras Industriales - Parte 1
Entrenamiento de un Modelo YOLO para Detectar Defectos en Soldaduras Industriales - Parte 2
Etiquetado de Imágenes con Label Studio
Reflexión y Cierre del Curso
You don't have access to this class
Keep learning! Join and start boosting your career
The detection of objects in images using artificial intelligence is a fascinating technology that is transforming multiple industries. Behind these systems is a fundamental process: data labeling. This process, although laborious, is essential to train models that can identify specific objects in images. Let's explore how to perform this manual labeling using professional tools and prepare our data to train object detection models.
Manual labeling is the process by which we identify and mark specific objects in images so that AI models learn to recognize them. To perform this process, we will use Label Studio, a specialized tool formerly known as Labelimage.
To begin, we need to install Label Studio using the following command:
pip install label-studio
Once installed, we can start the application with the command:
label-studio
This command launches a local server on port 8080 (localhost:8080) that allows us to access the Label Studio interface. An important advantage is that we can launch this process on a virtual machine, allowing our entire team to access the same URL to collaborate on labeling.
To start our labeling work, we need to create a new project:
After configuring the basic project information, we proceed to import our images. Label Studio supports multiple file formats, which makes it very versatile. We can either drag our images directly or load them using the corresponding button.
Once the images are loaded, we must configure the type of labeling we will perform:
The tagging process consists of marking each relevant object in our images:
It is important to note that the accuracy of the rectangle enclosing the object directly influences the quality of the resulting model. The more accurate the labeling, the better the performance of the AI model.
This process must be repeated for each image in the dataset. In professional environments, when working with thousands of images, there are usually teams dedicated exclusively to labeling or specialized companies are hired to perform this task.
Once the labeling of all the images is completed, we can export the results:
Label Studio allows us to export in a format compatible with YOLO v8, which also works correctly with YOLO v11 and other versions.
After exporting and unzipping our labeled dataset, we get:
To train a detection model, we need to divide our dataset into three subsets:
We can use a script to perform this division automatically:
# Script to divide the dataset into training, test and validation# Parameters: directory containing images and tags# Division: 70% training, 20% test, 10% validation
Finally, we need to create a YAML configuration file that specifies the paths to our data and the classes to detect:
train: path/to/train/imagesval: path/to/valid/imagestest: path/to/test/images
nc: 2 # number of classesnames: ['helmets', 'vests'] # class names.
With these steps, our dataset is fully prepared to train an object detection model using YOLO or other similar architectures.
Manual image labeling is a fundamental process for creating custom AI models that detect specific objects. Although it requires time and dedication, the results can transform the way we automate visual recognition tasks. Are you up for creating your own labeled dataset? Share your experiences and results in the comments.
Contributions 0
Questions 0
Want to see more contributions, questions and answers from the community?