Introducción y Fundamentos del NLP
Procesamiento de Lenguaje Natural
Configuración del Entorno y Exploración de Datos
Preprocesamiento Inicial
Quiz: Introducción y Fundamentos del NLP
Técnicas Tradicionales de NLP para Documentos Empresariales
Tokenización, Stemming y Lematización
Visualización y generación de nubes de palabras
Representación Vectorial: Bag-of-Words y TF-IDF
Extracción de Términos Clave y Modelado de Temas
Clasificación Tradicional para Análisis de Sentimientos y Categorías
Quiz: Técnicas Tradicionales de NLP para Documentos Empresariales
Introducción y Profundización en Transformers para Aplicaciones Empresariales
Fundamentos de Transformers y su Relevancia en NLP
Tokenización Avanzada con Transformers y Hugging Face
Uso de Modelos Preentrenados de Transformers para Clasificación
Reconocimiento de Entidades (NER) en Documentos Corporativos con Transformers
Fine-Tuning de Transformers para Datos Empresariales
Quiz: Introducción y Profundización en Transformers para Aplicaciones Empresariales
Proyecto Final y Estrategia Comercial B2B
Desarrollo y Prototipado de la Aplicación Empresarialparte 1
Desarrollo y Prototipado de la Aplicación Empresarialparte 2
Despliegue del proyecto en Hugging Face
You don't have access to this class
Keep learning! Join and start boosting your career
Text processing is a fundamental skill in the world of artificial intelligence and data analysis. Tokenization, stopword removal, stemming and lemmatization are essential techniques that allow us to transform unstructured text into actionable data for algorithms. These tools help us extract the essential meaning from texts, reducing complexity and improving the efficiency of our models.
Tokenization is the process of breaking text into smaller units called tokens, which can be groups of words, individual words or even single characters. This process is critical because it allows language models to process and understand text.
Each language model has its own tokenizer, which means that the way they divide text can vary significantly. For example, if we analyze the phrase "hello, how are you?" in different OpenAI models:
This variation is important because the number of tokens directly affects the cost and efficiency of text processing in AI applications.
There are two popular libraries for vectorizing and manipulating text in Python:
Both offer powerful tools for natural language processing, including multilingual capabilities. To work with Spanish text, it is necessary to specify the language or download specific models for Spanish.
# Example with spaCyimport spacy# Download Spanish model# python -m spacy download es_core_news_smnlp = spacy.load("es_core_news_sm")
sample_text = "Horrible, we had to buy another one because neither we know English nor an IT guy could install it."doc = nlp(sample_text)
# Get tokenstokens = [token.text for token in doc]# Get sentencessentences = [sent.text for sent in doc.sents]
print(tokens)
To better capture the main idea of a text and reduce the number of tokens, we can apply several refinement techniques. These techniques allow us to better manage resources and improve the quality of our analysis.
Stopwords are common words that do not contribute relevant information to the analysis, such as articles, prepositions and conjunctions. Eliminating them reduces the noise in our data.
Example: In the sentence "Horrible, we had to buy another one because neither we know English nor a computer scientist could install it", words like "we", "that", "because", "nor" would be considered stopwords.
These techniques reduce words to their base forms, but with different approaches:
Stemming: trims the word to its root, often by removing suffixes.
Lemmatization: Converts the word to its canonical form or lemma.
# Implementing refinement techniquesimport nltkfrom nltk.corpus import stopwordsfrom nltk.stem import SnowballStemmerfrom nltk.stem import WordNetLemmatizer
# Download needed resourcesnltk.download('stopwords')nltk.download('wordnet')
# Configure for Spanishstop_words = set(stopwords.words('spanish'))stemmer = SnowballStemmer('spanish')
sample_text = "Horrible, we had to buy another one because neither we know English nor an IT guy could install it."tokens = nltk.word_tokenize(sample_text, language='spanish')
# Remove stopwordstokens_without_stopwords = [word for word in tokens if word.lower() not in stop_words]
# Apply stemmingstemmed_tokens = [stemmer.stem(word) for word in tokens_without_stopwords]
# Apply lemmatization (requires POS tagging for best results)lemmatizer = WordNetLemmatizer()lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens_without_stopwords]
print("Original tokens:", tokens)print("No stopwords:", tokens_without_stopwords)print("With stemming:", stemmed_tokens)print("With lemmatization:", lemmatized_tokens)
By applying these techniques to our example text, we can see how the words are transformed:
Lemmatization better preserves meaning while reducing variability, making it ideal for many natural language processing applications.
Once we have refined and processed our dataset, we are ready to generate visualizations such as word clouds. These graphical representations allow us to quickly identify the most relevant terms in a text corpus.
To create an effective word cloud, it is recommended:
Word clouds are especially useful for:
Text processing is a fascinating field that combines linguistics and computer science to extract meaning from unstructured data. Mastering these techniques will allow you to develop more sophisticated text analysis and artificial intelligence applications. What text processing techniques have you used in your projects? Share your experience in the comments.
Contributions 2
Questions 0
Want to see more contributions, questions and answers from the community?