Introducci贸n y Fundamentos del NLP
Procesamiento de Lenguaje Natural
Configuraci贸n del Entorno y Exploraci贸n de Datos
Preprocesamiento Inicial
Quiz: Introducci贸n y Fundamentos del NLP
T茅cnicas Tradicionales de NLP para Documentos Empresariales
Tokenizaci贸n, Stemming y Lematizaci贸n
Visualizaci贸n y generaci贸n de nubes de palabras
Representaci贸n Vectorial: Bag-of-Words y TF-IDF
Extracci贸n de T茅rminos Clave y Modelado de Temas
Clasificaci贸n Tradicional para An谩lisis de Sentimientos y Categor铆as
Quiz: T茅cnicas Tradicionales de NLP para Documentos Empresariales
Introducci贸n y Profundizaci贸n en Transformers para Aplicaciones Empresariales
Fundamentos de Transformers y su Relevancia en NLP
Tokenizaci贸n Avanzada con Transformers y Hugging Face
Uso de Modelos Preentrenados de Transformers para Clasificaci贸n
Reconocimiento de Entidades (NER) en Documentos Corporativos con Transformers
Fine-Tuning de Transformers para Datos Empresariales
Quiz: Introducci贸n y Profundizaci贸n en Transformers para Aplicaciones Empresariales
Proyecto Final y Estrategia Comercial B2B
Desarrollo y Prototipado de la Aplicaci贸n Empresarialparte 1
Desarrollo y Prototipado de la Aplicaci贸n Empresarialparte 2
Despliegue del proyecto en Hugging Face
You don't have access to this class
Keep learning! Join and start boosting your career
Sentiment classification in comments is a fundamental task in textual data analysis. Using natural language processing and machine learning techniques, we can transform written opinions into valuable information for decision making. In this content, we will explore how to convert clean text into vector representations that allow us to train effective classification models.
Before starting the vectorization and training process, it is crucial to ensure that our data is properly prepared. To optimize performance, we will use a T4 GPU in Google Colab, which will significantly speed up processing times.
To load our previously cleaned dataset, we follow these steps:
Once the file is loaded, we proceed to unzip it and verify its content:
# Unzip the file!unrar x file.rar
# Load the datasetfilter_data = pd.read_csv('path_to_file')
# Visualize the first rowsfilter_data.head(3)
# Verify null valuesfilter_data.isnull().sum()
A crucial aspect is the verification of null values. In our case, we detected a single row with a null value, which we decided to remove due to the abundance of available data:
# remove rows with null valuesfilter_data = filter_data.dropna().
Transforming text to numeric vectors is essential for machine learning algorithms to process textual information. We will analyze two main methods:
This method converts text into numerical representations by counting word frequencies:
This method improves the Bag of Words representation by weighting the frequencies:
To implement these methods we will use the scikit-learn library, which provides efficient tools for text processing:
# Import the necessary toolsfrom sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
# Define the corpus (set of documents)corpus = filter_data['text_column'].tolist()
# Implement Bag of Wordsbow_vectorizer = CountVectorizer()bow_matrix = bow_vectorizer.fit_transform(corpus)
# View dimensions and featuresprint(f "Number of documents: {bow_matrix.shape[0]}")print(f "Vocabulary size: {len(bow_vectorizer.get_feature_names_out())}")print(f "First 10 words of the vocabulary: {bow_vectorizer.get_feature_names_out()[:10]}")
# Implement TF-IDFtfidf_vectorizer = TfidfVectorizer()tfidf_matrix = tfidf_vectorizer.fit_transform(corpus)
# View dimensions and featuresprint(f "Number of documents: {tfidf_matrix.shape[0]}")print(f "Vocabulary size: {len(tfidf_vectorizer.get_feature_names_out())}")
Both methods generate arrays with the same number of documents (rows of our dataset) and the same vocabulary size (unique words found in the whole corpus). The difference lies in how the values within these matrices are calculated.
These vector representations will be the basis for training classification models that can determine whether a comment expresses positive or negative sentiment. In next steps, we will be able to use these matrices to identify relevant themes that appear throughout all reviews.
Text vectorization is a fundamental step in natural language processing that allows us to transform qualitative information into quantitative data that can be processed by machine learning algorithms. Have you used any of these techniques in your projects? Share your experience in the comments.
Contributions 1
Questions 0
Want to see more contributions, questions and answers from the community?