Introducción y Fundamentos del NLP
Procesamiento de Lenguaje Natural
Configuración del Entorno y Exploración de Datos
Preprocesamiento Inicial
Quiz: Introducción y Fundamentos del NLP
Técnicas Tradicionales de NLP para Documentos Empresariales
Tokenización, Stemming y Lematización
Visualización y generación de nubes de palabras
Representación Vectorial: Bag-of-Words y TF-IDF
Extracción de Términos Clave y Modelado de Temas
Clasificación Tradicional para Análisis de Sentimientos y Categorías
Quiz: Técnicas Tradicionales de NLP para Documentos Empresariales
Introducción y Profundización en Transformers para Aplicaciones Empresariales
Fundamentos de Transformers y su Relevancia en NLP
Tokenización Avanzada con Transformers y Hugging Face
Uso de Modelos Preentrenados de Transformers para Clasificación
Reconocimiento de Entidades (NER) en Documentos Corporativos con Transformers
Fine-Tuning de Transformers para Datos Empresariales
Quiz: Introducción y Profundización en Transformers para Aplicaciones Empresariales
Proyecto Final y Estrategia Comercial B2B
Desarrollo y Prototipado de la Aplicación Empresarialparte 1
Desarrollo y Prototipado de la Aplicación Empresarialparte 2
Despliegue del proyecto en Hugging Face
You don't have access to this class
Keep learning! Join and start boosting your career
Sentiment analysis is a powerful tool for understanding opinions expressed in texts. Let's explore how to train a custom model to classify Spanish reviews as positive or negative.
To begin this process, we need to properly structure our data. The first step is to import a dataset of reviews and prepare it for training:
import pandas as pddf = pd.read_csv('review_dataset.csv')
Once the dataset is loaded, we can verify that it contains the necessary information: the review text (review_body) and the rating (stars). It is essential to condition this data by dividing the dataset into three parts:
To work with natural language processing models, we need to convert our ratings into binary labels:
This step is crucial so that the model can learn to distinguish between positive and negative sentiments in the text.
For best results, we will use a specialized Spanish base model, such as RoBERTa-BNE, trained with the corpus of the National Library of Spain. This transfer learning approach allows us to take advantage of a model that already understands the structure of the Spanish language.
Tokenization is an essential step in this process:
# we tokenize exclusively the content of the reviewstokenized_data = tokenizer(df['review_body'].tolist())
The fine-tuning process allows us to adapt the pre-trained model to our specific binary classification task. Key parameters include:
Importantly, once trained, the model can be uploaded to Hugging Face Hub, allowing anyone in the world to use it.
After training, we can test our model with real examples:
This type of personalized sentiment analysis has immediate practical applications for any business that receives customer feedback.
Have you ever trained a natural language processing model? Share your experience or doubts in the comments and don't forget to test this approach with your own data.
Contributions 5
Questions 0
Want to see more contributions, questions and answers from the community?