Patrones de diseño en Node.js
Qué es Node.js y cómo impulsa tu negocio
Patrones de diseño esenciales en Node.js
Patrón Singleton y Factory en JavaScript
Implementación práctica de Singleton y Factory en JavaScript
Implementación del patrón Observer con EventEmitter en Node.js
Implementación de Middlewares en Node.js sin Express
Decorators e inyección de dependencias en JavaScript
Flujo de Datos con Node.js
Aprende qué son Buffer y Streams en Node.js
Cómo utilizar streams y pipelines en Node.js
Cómo funciona el Event Loop en Node.js
Qué es Libuv y cómo maneja la asincronía en Node.js
Estrategias para ejecutar código asíncrono en Node.js
Debugging y Diagnóstico en Node.js
Cómo utilizar el Debugger en Node.js para solucionar problemas
Uso de Diagnostic Channels en Node.js para observabilidad y diagnóstico
Instrumentación y métricas clave en performance para aplicaciones Node.js
Control de errores globales y manejo de señales en Node.js
Implementación Eficiente de Logs con Pino en Node.js
Performance en Node.js
Análisis del event loop en aplicaciones Node.js usando Nsolid
Cómo Diagnosticar y Solucionar Memory Leaks en Aplicaciones Node.js
Optimizar rendimiento en Node.js con Worker Threads y Child Processes
Optimiza y Escala Aplicaciones Node.js con Técnicas de Caching
Creando CLIs con Node.js
Cómo crear aplicaciones CLI con Node.js
Cómo Crear un CLI con Minimist y Manejar Argumentos en Node.js
Creación de un CLI con Node.js y Google Generative AI
Creación de Chat con IA usando CLI en Node
Cómo Crear e Instalar tu Propio CLI de Node con npm
You don't have access to this class
Keep learning! Join and start boosting your career
Improving performance and understanding when to scale a Node.js application is key to ensuring efficiency and stability. One prominent technique is caching, which optimizes intensive processes by storing reusable results, thus significantly reducing response times and server usage.
Caching is a technique that allows storing the results of expensive operations in memory in order to reuse those data in future requests. Its basic and effective implementation consists of using the Node.js lru-cache module, one of the most popular packages with more than 200 million downloads per week, reliable and easy to configure.
To use it you install modules like lru-cache and configure key factors such as:
This method manages to handle large numbers of requests with remarkable efficiency. The cache can be configured in memory (easy to implement) or through more advanced solutions, such as Redis, allowing scale and distribution.
Implementing caching with lru-cache starts by importing and configuring the module, specifying the maximum cache size and duration:
import LRU from 'lru-cache';const cache = new LRU({ max: 1000, // maximum number of elements ttl: 1000 * 60 * 60 // cache lifetime (1 hour)});
Then, a simple mechanism is created to check if the requested information exists in cache. If it does, it is returned quickly; if not, the data is calculated, stored and then delivered, optimizing overall performance.
Determining how and when to scale a Node.js application depends directly on certain essential metrics:
Horizontal scaling is preferable when both CPU and Event Loop show high utilization. It consists of distributing the load across multiple Node processes using a load balancer system such as Nginx. For more complex implementations, Docker or Kubernetes can be used to efficiently manage multiple distributed instances.
On the other hand, vertical scaling is recommended when your application has high CPU consumption, but has not yet reached the Event Loop performance limit. In this scenario, increasing the number of cores or power on the same machine can improve performance by leveraging more processing power through workers or child processes.
In addition, in terms of memory, each Node process has by default up to 2 GB of heap. If the required memory exceeds these limits, scaling vertically by adding more memory to the machine is not as advisable as isolating processes in independent instances and keeping those limits advised by Node.
In addition to CPU, Event Loop and heap usage, it is also fundamental to analyze metrics related to the garbage collection process. This aspect determines whether scaling is needed due to a real high memory consumption (and not a memory leak), allowing to make informed and efficient decisions on how to optimize server techniques and structures.
Each strategy mentioned above contributes to significantly improve the performance, optimization and scalability of Node.js applications, positively impacting the end-user experience and development efficiency.
Contributions 0
Questions 0
Want to see more contributions, questions and answers from the community?