Introducci贸n a la Integraci贸n Nativa en Android
Integra APIs Nativas en Android
Creaci贸n proyecto base
Google Maps SDK
C贸mo crear una API key para Google Maps en Google Cloud
Creaci贸n de marcadores en Google Maps con Jetpack Compose
C贸mo dibujar rutas en mapas usando polil铆neas en Jetpack Compose
C贸mo enfocar autom谩ticamente mapas usando Camera Update Factory
Quiz: Google Maps SDK
Servicios de Localizaci贸n
Uso de Flows en Kotlin para Controlar Intervalos de Tiempo y Emisi贸n de Datos
C贸mo simular ubicaci贸n en emuladores y dispositivos reales
Creaci贸n de Modelos y C谩lculos de Localizaci贸n con Clean Architecture
Implementaci贸n de Localizaci贸n en Android Usando Flows
Inyecci贸n de dependencia para seguimiento de localizaci贸n en Android
Uso de StateFlows para rastrear ubicaci贸n en aplicaciones Android
Location Tracker
Implementaci贸n de Location Tracker con Inyecci贸n de Dependencias
Quiz: Servicios de Localizaci贸n
Integraci贸n Maps con Localizaci贸n
Integraci贸n de mapas din谩micos con CameraPositionState en Android
Creaci贸n y uso de polil铆neas en mapas con datos reales
Creaci贸n de una pantalla de mapa con Intents y estados en Jetpack Compose
Creaci贸n de un ViewModel para Seguimiento de Localizaci贸n en Android
Quiz: Integraci贸n Maps con Localizaci贸n
Manejo de permisos
Gesti贸n de permisos en Android para localizaci贸n, c谩mara y notificaciones
C贸mo implementar di谩logos para solicitar permisos en Android
Manejo de permisos de localizaci贸n y notificaci贸n en Android
C贸mo gestionar permisos en Android con Jetpack Compose
Quiz: Manejo de permisos
Integraci贸n c谩mara
Integraci贸n de c谩mara en Android con Photo Handler y manejo de permisos
Convierte Bitmaps a ByteArrays en Android con Kotlin
Creaci贸n de intents y estados UI para c谩mara en Android con Kotlin
Implementaci贸n de funciones clave en ViewModel para c谩mara Android
Integrar C谩maraX en Jetpack Compose para Android
Captura y previsualizaci贸n de fotos en Android con Jetpack Compose
C贸mo Mostrar Fotos en Marcadores de Ubicaci贸n en Mapas con Jetpack Compose
Quiz: Integraci贸n c谩mara
Servicios en Android
Implementaci贸n de servicios en Android: normal services y foreground services
Implementar Foreground Services en Android para Persistencia en Segundo Plano
Quiz: Servicios en Android
Transmisiones en Android (Broadcast)
Implementaci贸n de BroadcastReceiver en Android para Escuchar Eventos del Sistema
Pruebas finales y cierre
You don't have access to this class
Keep learning! Join and start boosting your career
Reactive programming with Kotlin Flow offers a powerful approach to handling real-time data, especially useful in applications that require location tracking. The use of StateFlows and operators such as flatMapLatest allows you to create robust observability systems that respond dynamically to changes in application state, while maintaining precise control over data flows.
Location tracking in mobile applications requires efficient handling of real-time data streams. Using Kotlin Flow, we can create a system that observes the location of the device and records this data along with temporal information.
To begin, we need to create a variable that represents the current location and depends on the observation state:
val currentLocation = isObservingLocation.flatMapLatest { isObserving -> if (isObserving) { locationObserver.observeLocation(intervalMillis = 1000) } else { emptyFlow() } }.stateIn( scope = applicationScope, started = SharingStarted.Lazily, initialValue = null)
In this code, we are using flatMapLatest
, which works as a channel selector. Depending on the value of isObservingLocation
, we switch between observing the location with one-second intervals or stopping the data stream completely. The stateIn
operator ensures that this information persists throughout the lifecycle of the application, starting the flow only when some visual component subscribes to the variable.
Precise control over when to collect location data is critical to create a smooth user experience and to optimize resource usage. For this, we implement an isTracking
variable to help us manage this behavior:
val isTracking = MutableStateFlow(false)
init { isTracking .distinctUntilChanged() .onEach { isTracking -> if (!isTracking) { val newList = buildList { addAll(locationData.value) add(emptyList()) } locationData.update { newList } } } .flatMapLatest { isTracking -> if (isTracking) { tickerFlow(1000) } else { emptyFlow() } } } .scan(0L) { acc, _ -> acc + 1 } .onEach { elapsedTime.update { it } } .launchIn(applicationScope)}
This code performs several important operations:
isTracking
to decide whether to emit time values or pause the flow.elapsedTime
launchIn
operator ensures that this stream survives for the entire lifecycle of the applicationCombining location data with timestamps allows us to perform more complex analysis, such as calculating distances and speeds. To achieve this, we create a flow that processes each location broadcast:
currentLocation .filterNotNull() .combine(isTracking) { location, isTracking -> if (isTracking) location else null } .filterNotNull() .zip(elapsedTime) { location, time -> LocationWithTimestamp(location, time) } .onEach { locationWithTime -> val lastLocations = locationData.value if (lastLocations.isNotEmpty()) { val updatedSegment = lastLocations.last() + locationWithTime val updatedList = lastLocations.dropLast(1) + updatedSegment locationData.update { updatedList } } else { locationData.update { listOf(listOf(listOf(locationWithTime))) } } }
// Calculate total distance val distanceMeters = calculateTotalDistance(locationData.value) totalDistance.update { distanceMeters } } .launchIn(applicationScope)
This flow is the heart of our location tracking application:
zip
to link each location to its corresponding timestampThe data structure we use (a list of lists) allows us to keep separate segments when the user pauses and resumes tracking, making it easy to visualize discontinuous routes in the user interface.
Reactive programming with Kotlin Flow provides us with powerful tools to handle complex data flows elegantly and efficiently. By implementing a location tracking system, we can leverage operators like flatMapLatest
, combine
and zip
to create a smooth and responsive user experience. Have you ever implemented similar systems? Share your experience in the comments.
Contributions 0
Questions 0
Want to see more contributions, questions and answers from the community?