Introducci贸n a la Integraci贸n Nativa en Android

1

Integra APIs Nativas en Android

2

Creaci贸n proyecto base

Google Maps SDK

3

C贸mo crear una API key para Google Maps en Google Cloud

4

Creaci贸n de marcadores en Google Maps con Jetpack Compose

5

C贸mo dibujar rutas en mapas usando polil铆neas en Jetpack Compose

6

C贸mo enfocar autom谩ticamente mapas usando Camera Update Factory

Quiz: Google Maps SDK

Servicios de Localizaci贸n

7

Uso de Flows en Kotlin para Controlar Intervalos de Tiempo y Emisi贸n de Datos

8

C贸mo simular ubicaci贸n en emuladores y dispositivos reales

9

Creaci贸n de Modelos y C谩lculos de Localizaci贸n con Clean Architecture

10

Implementaci贸n de Localizaci贸n en Android Usando Flows

11

Inyecci贸n de dependencia para seguimiento de localizaci贸n en Android

12

Uso de StateFlows para rastrear ubicaci贸n en aplicaciones Android

13

Location Tracker

14

Implementaci贸n de Location Tracker con Inyecci贸n de Dependencias

Quiz: Servicios de Localizaci贸n

Integraci贸n Maps con Localizaci贸n

15

Integraci贸n de mapas din谩micos con CameraPositionState en Android

16

Creaci贸n y uso de polil铆neas en mapas con datos reales

17

Creaci贸n de una pantalla de mapa con Intents y estados en Jetpack Compose

18

Creaci贸n de un ViewModel para Seguimiento de Localizaci贸n en Android

Quiz: Integraci贸n Maps con Localizaci贸n

Manejo de permisos

19

Gesti贸n de permisos en Android para localizaci贸n, c谩mara y notificaciones

20

C贸mo implementar di谩logos para solicitar permisos en Android

21

Manejo de permisos de localizaci贸n y notificaci贸n en Android

22

C贸mo gestionar permisos en Android con Jetpack Compose

Quiz: Manejo de permisos

Integraci贸n c谩mara

23

Integraci贸n de c谩mara en Android con Photo Handler y manejo de permisos

24

Convierte Bitmaps a ByteArrays en Android con Kotlin

25

Creaci贸n de intents y estados UI para c谩mara en Android con Kotlin

26

Implementaci贸n de funciones clave en ViewModel para c谩mara Android

27

Integrar C谩maraX en Jetpack Compose para Android

28

Captura y previsualizaci贸n de fotos en Android con Jetpack Compose

29

C贸mo Mostrar Fotos en Marcadores de Ubicaci贸n en Mapas con Jetpack Compose

Quiz: Integraci贸n c谩mara

Servicios en Android

30

Implementaci贸n de servicios en Android: normal services y foreground services

31

Implementar Foreground Services en Android para Persistencia en Segundo Plano

Quiz: Servicios en Android

Transmisiones en Android (Broadcast)

32

Implementaci贸n de BroadcastReceiver en Android para Escuchar Eventos del Sistema

33

Pruebas finales y cierre

You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

0 D铆as
12 Hrs
50 Min
21 Seg

Location Tracker

13/33
Resources

Reactive programming with Kotlin Flow offers a powerful approach to handling real-time data, especially useful in applications that require location tracking. The use of StateFlows and operators such as flatMapLatest allows you to create robust observability systems that respond dynamically to changes in application state, while maintaining precise control over data flows.

How to implement a location tracking system with Kotlin Flow?

Location tracking in mobile applications requires efficient handling of real-time data streams. Using Kotlin Flow, we can create a system that observes the location of the device and records this data along with temporal information.

To begin, we need to create a variable that represents the current location and depends on the observation state:

val currentLocation = isObservingLocation.flatMapLatest { isObserving -> if (isObserving) { locationObserver.observeLocation(intervalMillis = 1000) } else { emptyFlow() } }.stateIn( scope = applicationScope, started = SharingStarted.Lazily, initialValue = null)

In this code, we are using flatMapLatest, which works as a channel selector. Depending on the value of isObservingLocation, we switch between observing the location with one-second intervals or stopping the data stream completely. The stateIn operator ensures that this information persists throughout the lifecycle of the application, starting the flow only when some visual component subscribes to the variable.

How to manage tracking and pauses in data collection?

Precise control over when to collect location data is critical to create a smooth user experience and to optimize resource usage. For this, we implement an isTracking variable to help us manage this behavior:

val isTracking = MutableStateFlow(false)
init { isTracking .distinctUntilChanged() .onEach { isTracking -> if (!isTracking) { val newList = buildList { addAll(locationData.value) add(emptyList()) } locationData.update { newList } } } .flatMapLatest { isTracking -> if (isTracking) { tickerFlow(1000) } else { emptyFlow() } } } .scan(0L) { acc, _ -> acc + 1 } .onEach { elapsedTime.update { it } } .launchIn(applicationScope)}

This code performs several important operations:

  1. When the tracking state changes to paused, we accumulate the previous list of locations and create a new empty list.
  2. We use isTracking to decide whether to emit time values or pause the flow.
  3. At each time broadcast, we accumulate that time in the variable elapsedTime
  4. The launchIn operator ensures that this stream survives for the entire lifecycle of the application

How to combine location data with temporal information?

Combining location data with timestamps allows us to perform more complex analysis, such as calculating distances and speeds. To achieve this, we create a flow that processes each location broadcast:

currentLocation .filterNotNull() .combine(isTracking) { location, isTracking -> if (isTracking) location else null } .filterNotNull() .zip(elapsedTime) { location, time -> LocationWithTimestamp(location, time) } .onEach { locationWithTime -> val lastLocations = locationData.value if (lastLocations.isNotEmpty()) { val updatedSegment = lastLocations.last() + locationWithTime val updatedList = lastLocations.dropLast(1) + updatedSegment locationData.update { updatedList } } else { locationData.update { listOf(listOf(listOf(locationWithTime))) } } }        
 // Calculate total distance val distanceMeters = calculateTotalDistance(locationData.value) totalDistance.update { distanceMeters } } .launchIn(applicationScope)

This flow is the heart of our location tracking application:

  1. We filter out null location values.
  2. We combine the location with the tracking state to emit only when we are in active mode
  3. We use zip to link each location to its corresponding timestamp
  4. Update our list of location segments, adding the new point to the current segment
  5. We calculate the total distance traveled and update the corresponding variable

The data structure we use (a list of lists) allows us to keep separate segments when the user pauses and resumes tracking, making it easy to visualize discontinuous routes in the user interface.

Reactive programming with Kotlin Flow provides us with powerful tools to handle complex data flows elegantly and efficiently. By implementing a location tracking system, we can leverage operators like flatMapLatest, combine and zip to create a smooth and responsive user experience. Have you ever implemented similar systems? Share your experience in the comments.

Contributions 0

Questions 0

Sort by:

Want to see more contributions, questions and answers from the community?