Introducci贸n a la Integraci贸n Nativa en Android
Integra APIs Nativas en Android
Creaci贸n proyecto base
Google Maps SDK
C贸mo crear una API key para Google Maps en Google Cloud
Creaci贸n de marcadores en Google Maps con Jetpack Compose
C贸mo dibujar rutas en mapas usando polil铆neas en Jetpack Compose
C贸mo enfocar autom谩ticamente mapas usando Camera Update Factory
Quiz: Google Maps SDK
Servicios de Localizaci贸n
Uso de Flows en Kotlin para Controlar Intervalos de Tiempo y Emisi贸n de Datos
C贸mo simular ubicaci贸n en emuladores y dispositivos reales
Creaci贸n de Modelos y C谩lculos de Localizaci贸n con Clean Architecture
Implementaci贸n de Localizaci贸n en Android Usando Flows
Inyecci贸n de dependencia para seguimiento de localizaci贸n en Android
Uso de StateFlows para rastrear ubicaci贸n en aplicaciones Android
Location Tracker
Implementaci贸n de Location Tracker con Inyecci贸n de Dependencias
Quiz: Servicios de Localizaci贸n
Integraci贸n Maps con Localizaci贸n
Integraci贸n de mapas din谩micos con CameraPositionState en Android
Creaci贸n y uso de polil铆neas en mapas con datos reales
Creaci贸n de una pantalla de mapa con Intents y estados en Jetpack Compose
Creaci贸n de un ViewModel para Seguimiento de Localizaci贸n en Android
Quiz: Integraci贸n Maps con Localizaci贸n
Manejo de permisos
Gesti贸n de permisos en Android para localizaci贸n, c谩mara y notificaciones
C贸mo implementar di谩logos para solicitar permisos en Android
Manejo de permisos de localizaci贸n y notificaci贸n en Android
C贸mo gestionar permisos en Android con Jetpack Compose
Quiz: Manejo de permisos
Integraci贸n c谩mara
Integraci贸n de c谩mara en Android con Photo Handler y manejo de permisos
Convierte Bitmaps a ByteArrays en Android con Kotlin
Creaci贸n de intents y estados UI para c谩mara en Android con Kotlin
Implementaci贸n de funciones clave en ViewModel para c谩mara Android
Integrar C谩maraX en Jetpack Compose para Android
Captura y previsualizaci贸n de fotos en Android con Jetpack Compose
C贸mo Mostrar Fotos en Marcadores de Ubicaci贸n en Mapas con Jetpack Compose
Quiz: Integraci贸n c谩mara
Servicios en Android
Implementaci贸n de servicios en Android: normal services y foreground services
Implementar Foreground Services en Android para Persistencia en Segundo Plano
Quiz: Servicios en Android
Transmisiones en Android (Broadcast)
Implementaci贸n de BroadcastReceiver en Android para Escuchar Eventos del Sistema
Pruebas finales y cierre
You don't have access to this class
Keep learning! Join and start boosting your career
In localization projects, proper timing control is key to optimize emissions and throughput. Kotlin offers specific tools such as Flows, ideal to output data at regular intervals and control reactive processes efficiently. Here we explain how to implement a timer using these functionalities.
A Flow in Kotlin is a way to handle reactive scheduling by emitting data streams. It allows to emit values at different intervals, process them with intermediate operators and perform actions with termination operators. Its main application is to execute time and frequency controlled tasks, such as emitting locations or times.
To create a timer using Flows, we must initially:
For example, in our timer we start an initial timestamp(lastEmitTime
) using System.currentTimeMillis()
and then open an infinite loop that:
(currentTime
).currentTime - lastEmitTime
to generate an actual duration.lastEmitTime
with the current value to start a new accurate measurement.This allows for precise handling, although small variations may occur due to internal execution in the system.
Activating a Flow requires specific termination operators:
LifecycleScope.launch
, we activate the emission using the collect
function, which allows to receive and process the emitted data.launchIn(LifecycleScope)
combined with the onEach
operator, which makes it easy to perform specific actions for each intermediate broadcast before terminating them.Both operators act as final triggers of Flows; without these operators the data broadcast will not start, setting up a cold Flow.
It is possible and easy to combine multiple Flows emissions using specific operators such as zip
or combine
to merge different information:
zip
: will emit a combine each time both Flows have new data available.scan
can accumulate or operationally transform the streams.The result is an organized and synchronized flow, useful for complex scenarios such as data visualization in controlled periods.
By implementing these steps correctly, you can significantly optimize the reactive management of your Android application, improving accuracy in time-critical tasks and continuous data streaming.
Do you have questions about implementing Flows in Kotlin? Leave us your question in the comments, we will be happy to help you.
Contributions 0
Questions 0
Want to see more contributions, questions and answers from the community?