Introducci贸n a la Integraci贸n Nativa en Android

1

Integra APIs Nativas en Android

2

Creaci贸n proyecto base

Google Maps SDK

3

C贸mo crear una API key para Google Maps en Google Cloud

4

Creaci贸n de marcadores en Google Maps con Jetpack Compose

5

C贸mo dibujar rutas en mapas usando polil铆neas en Jetpack Compose

6

C贸mo enfocar autom谩ticamente mapas usando Camera Update Factory

Quiz: Google Maps SDK

Servicios de Localizaci贸n

7

Uso de Flows en Kotlin para Controlar Intervalos de Tiempo y Emisi贸n de Datos

8

C贸mo simular ubicaci贸n en emuladores y dispositivos reales

9

Creaci贸n de Modelos y C谩lculos de Localizaci贸n con Clean Architecture

10

Implementaci贸n de Localizaci贸n en Android Usando Flows

11

Inyecci贸n de dependencia para seguimiento de localizaci贸n en Android

12

Uso de StateFlows para rastrear ubicaci贸n en aplicaciones Android

13

Location Tracker

14

Implementaci贸n de Location Tracker con Inyecci贸n de Dependencias

Quiz: Servicios de Localizaci贸n

Integraci贸n Maps con Localizaci贸n

15

Integraci贸n de mapas din谩micos con CameraPositionState en Android

16

Creaci贸n y uso de polil铆neas en mapas con datos reales

17

Creaci贸n de una pantalla de mapa con Intents y estados en Jetpack Compose

18

Creaci贸n de un ViewModel para Seguimiento de Localizaci贸n en Android

Quiz: Integraci贸n Maps con Localizaci贸n

Manejo de permisos

19

Gesti贸n de permisos en Android para localizaci贸n, c谩mara y notificaciones

20

C贸mo implementar di谩logos para solicitar permisos en Android

21

Manejo de permisos de localizaci贸n y notificaci贸n en Android

22

C贸mo gestionar permisos en Android con Jetpack Compose

Quiz: Manejo de permisos

Integraci贸n c谩mara

23

Integraci贸n de c谩mara en Android con Photo Handler y manejo de permisos

24

Convierte Bitmaps a ByteArrays en Android con Kotlin

25

Creaci贸n de intents y estados UI para c谩mara en Android con Kotlin

26

Implementaci贸n de funciones clave en ViewModel para c谩mara Android

27

Integrar C谩maraX en Jetpack Compose para Android

28

Captura y previsualizaci贸n de fotos en Android con Jetpack Compose

29

C贸mo Mostrar Fotos en Marcadores de Ubicaci贸n en Mapas con Jetpack Compose

Quiz: Integraci贸n c谩mara

Servicios en Android

30

Implementaci贸n de servicios en Android: normal services y foreground services

31

Implementar Foreground Services en Android para Persistencia en Segundo Plano

Quiz: Servicios en Android

Transmisiones en Android (Broadcast)

32

Implementaci贸n de BroadcastReceiver en Android para Escuchar Eventos del Sistema

33

Pruebas finales y cierre

You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

0 D铆as
5 Hrs
23 Min
36 Seg

Uso de Flows en Kotlin para Controlar Intervalos de Tiempo y Emisi贸n de Datos

7/33
Resources

In localization projects, proper timing control is key to optimize emissions and throughput. Kotlin offers specific tools such as Flows, ideal to output data at regular intervals and control reactive processes efficiently. Here we explain how to implement a timer using these functionalities.

What is a Flow in Kotlin and what is it for?

A Flow in Kotlin is a way to handle reactive scheduling by emitting data streams. It allows to emit values at different intervals, process them with intermediate operators and perform actions with termination operators. Its main application is to execute time and frequency controlled tasks, such as emitting locations or times.

How to build a Flow that emits time intervals?

To create a timer using Flows, we must initially:

  • Create a "Domain" folder containing a class called "Timer".
  • Inside this class we define a function that emits custom time intervals using a FlowBuilder.

For example, in our timer we start an initial timestamp(lastEmitTime) using System.currentTimeMillis() and then open an infinite loop that:

  • Captures the current time(currentTime).
  • Calculates the interval by subtracting currentTime - lastEmitTime to generate an actual duration.
  • Emits this interval every 200 milliseconds.
  • It updates lastEmitTime with the current value to start a new accurate measurement.

This allows for precise handling, although small variations may occur due to internal execution in the system.

How to activate and control the Flow emission?

Activating a Flow requires specific termination operators:

  • With LifecycleScope.launch, we activate the emission using the collect function, which allows to receive and process the emitted data.
  • Another practical way is to use launchIn(LifecycleScope) combined with the onEach operator, which makes it easy to perform specific actions for each intermediate broadcast before terminating them.

Both operators act as final triggers of Flows; without these operators the data broadcast will not start, setting up a cold Flow.

How to combine different Flows effectively?

It is possible and easy to combine multiple Flows emissions using specific operators such as zip or combine to merge different information:

  • For example, combining the emission of time intervals with random values. You use:
  • zip: will emit a combine each time both Flows have new data available.
  • Operators such as scan can accumulate or operationally transform the streams.

The result is an organized and synchronized flow, useful for complex scenarios such as data visualization in controlled periods.

By implementing these steps correctly, you can significantly optimize the reactive management of your Android application, improving accuracy in time-critical tasks and continuous data streaming.

Do you have questions about implementing Flows in Kotlin? Leave us your question in the comments, we will be happy to help you.

Contributions 0

Questions 0

Sort by:

Want to see more contributions, questions and answers from the community?