Introducción
Qué aprenderás sobre Física Mecánica Estática
Conceptos fundamentales
Sistemas de unidades
Ejercicios de conversión de unidades
Estática de Particulas
Introducción Estática de Particulas
Suma de fuerzas en el plano
Equilibrio en el plano
El diagrama de cuerpo libre
Suma de fuerzas en el espacio
Equilibrio en el espacio
Ejercicios estática de partículas
Cuerpos rígidos
Fuerza y momento
Momento de una fuerza en torno a un eje
Par de fuerzas
Simplificando sistemas de fuerzas
Ejercicios Cuerpos Rígidos
Equilibrio de los cuerpos rígidos
Reacciones y apoyos
Equilibrio en 2 dimensiones
Casos especiales de equilibrio de fuerzas
Equilibrio en 3 dimensiones
Análisis de estructuras
Reticulados
¿Cómo funciona un reticulado?
Método de los nudos
Método de las secciones
Marcos
Ejercicios análisis de estructuras
Futuros pasos
Conclusiones
You don't have access to this class
Keep learning! Join and start boosting your career
When we face everyday problems about forces and equilibrium, we often need to simplify to obtain more manageable solutions. Today we will see a clear example: reducing the forces exerted on a three-dimensional table to a two-dimensional problem. In this way, we can apply basic principles of the equations of equilibrium and solve them with ease.
First, we consider the dimensions of the table: width, length and depth. For simplicity, we will work with only two dimensions, which means that we will solve only three essential equations:
The supports are vital for equilibrium. In this exercise, we have:
Our task is to find these reactions, considering that we have three unknowns: the vertical reactions at points A and B, and the horizontal reaction at A.
Let's see how to solve these equations step by step:
The simplest equation, since there is only one horizontal force, the reaction at A horizontal:
[ \sum F_x = A_h = 0 ]
This is because there are no other horizontal forces in the system.
We represent all vertical forces by summing the reactions at A and B and subtracting the applied external forces:
[ A_v + B_v - 15 - 6 - 6 - 6 = 0 ]
Adding the forces:
[A_v + B_v = 27
The use of the summation of moments helps us to solve the undecided equation by choosing a point, in this case point A, and solving for the forces:
Considering only the forces perpendicular to the pivot point, and assuming counterclockwise moments as positive:
[ -15N \times 3m - 6N \times 11m - 6N \times 13m + B_v \times 9m = 0 ]
Simplifying:
[ -45 - 66 - 78 + 9B_v = 0 ]
Results in:
[ 9B_v = 189 \Rightarrow B_v = 21N ]
Finally, having the value of (B_v), we can find (A_v):
[ A_v + 21 = 27 \Rightarrow A_v = 6N ]
Checking units is crucial. In our case, by dividing a (\text{Newton}) meter by meters, we are left with units of Newton, which is correct since we are evaluating forces. Making sure to keep the units consistent is indispensable for the correct interpretation of the result.
Yes, knowing that we have successfully solved the reactions for this problem, we can extend this methodology to other beam systems or structures in equilibrium. The process is fundamentally the same and will allow us to gain confidence and efficiency in tackling increasingly complex problems.
Keep exploring and practicing! Experience is key to mastering systems analysis and ensuring that our solutions are both accurate and effective.
Contributions 3
Questions 0
Algo importante a considerar es el sentido de las reacciones, debemos suponer un sentido arbitrario para la fuerza, el signo de la respuesta obtenida indicará si nuestra suposición fue correcta o no.
Want to see more contributions, questions and answers from the community?