Bienvenida

1

Celery ¿Qué es, para qué sirve, cómo se usa?

2

Repositorio del proyecto

3

Arquitecturas de software basadas en mensajería y colas de tareas

4

Brokers de tareas: Servidores de mensajería y formas de usarlos

5

¿Cuándo debemos usar Celery?

6

Reto: Casos de uso de Celery

Bot de Slack

7

¿Cómo funciona un bot?

8

Cómo funciona el API de Slack para programación de bots (y parecidos y diferencias con otros APIs)

9

¿Cómo crear un bot reactivo?

10

Reto: posibles aplicaciones de bots de Slack, buscar ejemplos y entender cómo se llevarían a cabo

11

Reto: modificar el bot básico y crear alguno que responda a a algún tipo de petición o muestre algo

Brokers de mensajería

12

¿Qué es un broker de mensajería y cuándo debe usarse?

13

Conceptos: mecanismos de publicación/suscripción. Canales. Intercambiadores

14

Brokers de mensajería open source

15

Python con RabbitMQ uso básico de la terminal

16

Comparación de diferentes brokers de mensajería para trabajar con Celery

17

Reto: Crear una pequeña aplicación cliente-servidor que use RabbitMQ desde Python

Celery y brokers de mensajería

18

Creando un entorno de desarrollo para Celery

19

Instalación y creación de un programa básico pub/sub

20

Cómo usar Celery para programar un robot de Slack: diseño y comienzo de la implementación

21

Monitorización de tareas

22

Solucionando problemas

23

Reto: implementación y despliegue básico de un bot de Slack

Enrutado de tareas

24

Conceptos: enrutado de tareas y por qué se necesita

25

Enrutado manual

26

Mensajería en Celery: uso de Kombu

27

Enrutado automático

28

Reto: diseño de mecanismos de enrutado para un bot de Slack

Integración y despliegue en la nube

29

Estructura de mensajes en Celery y resultados de tareas

30

Tareas periódicas con Celery

31

Configuración de sistemas en la nube

32

Contenedores

33

Despliegue en un PaaS: Heroku

34

Uso de Celery con Node.js

35

Reto: despliegue en la nube (usando cuentas gratuitas)

Conclusiones

36

Despedida, conclusiones y a dónde ir desde aquí

No tienes acceso a esta clase

¡Continúa aprendiendo! Únete y comienza a potenciar tu carrera

Curso de Celery 4

Curso de Celery 4

Juan Julián Merelo

Juan Julián Merelo

Estructura de mensajes en Celery y resultados de tareas

29/36
Recursos

Celery transporta la respuestas de las tareas.

Formatos de serialización:

  • JSON por omisión
  • Puede usar YAML
  • pickle (formato específico de Python)
  • msgpack(formato universal de empaquetado de mensajes)
  • Admite otros tipos de MIME

Se necesita almacenar la respuesta. Por eso hay que realizar algunos cambios para recibir estas respuestas. Tendrás que configurar un backend para almacenar las tareas en tránsito y una vez configurado, el transporte y presentación se hacen automáticamente.

Puedes usar ORM para Django, Memcached, Redis, RabbitMQ/AMQP como Backends para Celery

Aportes 0

Preguntas 0

Ordenar por:

Los aportes, preguntas y respuestas son vitales para aprender en comunidad. Regístrate o inicia sesión para participar.