Muy bien que haya explicado el método del codo
Retail Store en Google Cloud Platform
Lo que aprenderás sobre GCP para ecommerce
Etapas clave y MLOps
Arquitectura de alto nivel
Tour de la aplicación de retail
Backend as a Service y modelo de seguridad
Introducción al proyecto
Medición de interacciones
Setup de Google Tag Manager
Etiquetando con Google Tag Manager
Etiquetas relevantes para CLV
Integración con servicios
Exposición de servicios con Apigee
Servicios expuestos con APIs
¿Qué son las APIs?
Apigee
Creación de tu primer API Proxy en Apigee
Administración de APIs con Apigee
Creando un portal de desarrolladores
Interactuando con el portal de desarrolladores
Insights to Actions
Generación de modelos AI/ML
Machine Learning con datos estructurados
BigQuery para modelos de Forecasting y LTV
Bigquery ML - Manos a la Obra
Auto ML vs. Bigquery ML
Consideraciones para entrenar un modelo en BigQueryML
Entrenamiento del modelo en BigQuery ML
Cómo exportar modelos hechos en BQML
Exportando un modelo hecho con BQML
Consumo de servicios de AI/ML
Cómputo Serverless y Contenedores
¿Qué es Kubernetes?
Consumo de modelos ML mediante BigQuery API
Almacenamiento de predicciones
Ejecución de predicciones y persistencia
Despliegue continuo con Cloud Run
Ejecución de despliegue con Cloud Run
Escalamiento de servicios en Cloud Run
AuthN y AuthZ con Cloud Run
Google Marketing Platform
Análisis de las predicciones
Segmentamos nuestras Predicciones
Caso práctico para definir tu estrategia de activación
Generemos nuestros modelos en la plataforma
Segmentamos nuestras audiencias en BigQuery
Carga tus audiencias y conecta tu medio de activación
You don't have access to this class
Keep learning! Join and start boosting your career
Let's dive into the exciting world of data management with SQL, specifically related to Google Analytics to improve our marketing campaigns. This process is essential to better understand our customers, as well as their behaviors, and create strategies based on concrete data. It is crucial to have a clear view on how much time customers spend on our screens and how many times they return, as this can be indicative of their interest. Let's start figuring out how to structure this data efficiently!
When we talk about Google Analytics data, it usually comes disaggregated and at a fairly granular level. Therefore, the first thing to do is to aggregate this information at the customer level, focusing on:
To process this information we use SQL. The basic SQL statement to aggregate this data would be:
SELECT user, SUM(time_on_screen) AS time_on_screen, SUM(unique_sessions) AS unique_screen_viewsFROM datasetGROUP BY user;
In this code, we replace "dataset" with the specific name of our project, and group the results according to users.
The next step is to merge this information with that of our CRM to get a complete picture of each customer. This includes:
We implement the following SQL query to perform this matching:
SELECT user_id, account_number, annual_revenue, time_on_screen, unique_screen_views, loyalty_program, ageFROM your_crm_dataset.
In this section, we are joining the user data with the values we already added in the previous part.
After structuring and combining the information, it is time to segment the data using a K Means model, ideal for clustering audiences. This model helps us to identify patterns such as:
The K Means process involves defining one or more centroids, and can be initiated using the following SQL script:
CREATE MODEL `project.dataset.model_name`OPTIONS( model_type='kmeans', num_clusters = 9, distance_type = 'euclidean')ASSELECT variable_1, variable_2FROM data;
It is not wise to implement too many campaigns at the same time. The "elbow" strategy allows us to optimize the number of clusters. This involves analyzing the inertia curve versus number of clusters to identify a point where adding more clusters does not substantially improve the compactness of the model.
When plotting the results of this technique, we will look for a point on the graph where the slope begins to flatten, indicating the optimal number of clusters. This analysis will help to negotiate efficiently with marketing departments.
This process of data structuring and segmentation, coupled with a correct analysis of the number of clusters, effectively optimizes marketing campaigns. The importance of a data-driven approach to business decision making cannot be underestimated. Try these techniques and get ready to enhance your customer interactions - keep learning and improving!
Contributions 2
Questions 0
Muy bien que haya explicado el método del codo
Want to see more contributions, questions and answers from the community?