¡Años sin hacer una demostración!!!
Introducción al curso
Lo que aprenderás sobre álgebra lineal: vectores
Vectores
Algunos objetos matemáticos: vectores y escalares
Convención en notación
Comienza a utilizar vectores en Python
Adición entre vectores
Suma de vectores en Python
Producto escalar-vector
Producto escalar-vector en Python
Producto interno
Producto interno en Python
Proyecto: análisis de sentimientos
Funciones lineales
Funciones lineales
Algunas funciones lineales
Un teorema en funciones lineales
Funciones afines
Aproximaciones de Taylor
Ejemplo en aproximaciones de Taylor
Un modelo de regresión
Norma y distancia
Cómo calcular distancias de vectores
Distancia entre vectores
Distancia entre vectores y búsqueda de departamento
Desviación estándar
Cálculo de riesgo en inversiones
Ángulo entre vectores y correlación
Clustering
¿Qué es y por qué clustering?
Una aproximación: K-Means
K-Means en Python
Cierre
Cierre y despedida
Crea una cuenta o inicia sesión
¡Continúa aprendiendo sin ningún costo! Únete y comienza a potenciar tu carrera
No se trata de lo que quieres comprar, sino de quién quieres ser. Invierte en tu educación con el precio especial
Antes: $249
Paga en 4 cuotas sin intereses
Termina en:
Aportes 20
Preguntas 1
¡Años sin hacer una demostración!!!
Comprobación de a+0
Supongo que para una demostración propiamente dicha, queda muy corta , pero la idea fue intentar evidenciar que se cumple la propiedad.
No es nada distinto a lo que han aportado antes, pero aca va mi aporte 😄.
Un pequeño aporte de una función para sumar vectores en Python:
def suma_vectores(vector_a, vector_b):
if len(vector_a) == len(vector_b):
return [vector_a[i] + vector_b[i] for i in range(len(vector_a))]
else:
print('Error: vectores de longitudes diferentes')
Ejemplo de uso (usando los vectores de colores de la clase pasada):
Hice un ejemplo en excel
El profesor explica con mucho detenimiento, es muy fácil de recordar estos conceptos
La plantita se esta secando!
Hola platzitueros,
Demostración solicitada:
Propiedad: elemento neutro de la suma
Saludos
Me encantó esta clase,
paso a paso con las propiedades de la adición entre vectores, como se suman los vectores. El profesor explica muy bien y se toma su tiempo! Excelente
Luego de medio año desde que comencé álgebra lineal desde cero, y entender lo que es un grupo abeliano, un semigrupo y que el producto se distribuye sobre la suma. Entiendo perfectamente lo que en PLATZI llaman las “necesidades del negocio”.
Los ingenieros suelen aterrizar sí o sí las magníficas abstracciones de los matemáticos.
(0>= r <= 255) es un subconjunto de R
$\vec{a}-\vec{a}=\vec{0}$
un ejemplo con numpy
import numpy as np
a = np.array([1, 2, 3]) # Vector a
neg_a = -a # Inverso (opuesto) de a
resultado = a + neg_a # Suma de a y su inverso
print(resultado) # Imprimir el resultado
[0 0 0]
Así quedaría el código que forme:
Rojo=[255,0,0]
Verde=[0,255,0]
Azul=[0,0,255]
Negro=[0,0,0]
Verde_y_Rojo= Rojo + Verde
print("La concatenación del clor verde y rojo nos da: ",Verde_y_Rojo)
print("El subvector del vector Verde_y_Rojo que corresponde al rojo es el vector que va del 0:3", Verde_y_Rojo[0:3])
print("El subvector del vector Verde_y_Rojo que corresponde al Verde es el vector que va del 3:6", Verde_y_Rojo[3:6])
Negro_Azul = Negro + Azul
print("La concatenación del clor Negro y Azul nos da: ",Negro_Azul)
print("El subvector del vector Negro_Azul que corresponde al Negro es el vector que va del 0:3", Negro_Azul[0:3])
print("El subvector del vector Negro_Azul que corresponde al Azul es el vector que va del 3:6", Negro_Azul[3:6])
Pues así lo realicé yo 😃
Hola, el link del colab no funciona
¿Quieres ver más aportes, preguntas y respuestas de la comunidad?