No tienes acceso a esta clase

¡Continúa aprendiendo! Únete y comienza a potenciar tu carrera

Producto interno

9/28
Recursos

Aportes 12

Preguntas 2

Ordenar por:

¿Quieres ver más aportes, preguntas y respuestas de la comunidad?

o inicia sesión.

Con el producto punto podemos obtener el angulo formado entre dos vectores a partir de la siguiente formula

Produicto punto en python sin librerias:

def point_product(u, v):
    pp = 0
    if len(u) == len(v):
        for i in range(0, len(u)):
            pp += u[i] * v[i]

    return pp


En python con la libreria numpy usamos la funcion dot() para obtener el producto interno entre vectores.

a = np.array([1,2,3])
b = np.array([5,6,2])

b.dot(a)

>>> 23

Para recordar: Producto punto o producto escalar nos regresa un número

Para recordar: La transpuesta de una columna nos dará un reglón y viceversa

Para recordar: Al multiplicar un vector renglón por un vector columna, tendremos un escalar.

Les recomiendo este post para conocer la utilidad de calcular el producto punto:
¿Qué es el producto punto y para que sirve?

Al parecer en la literatura es más común verlo como “Producto punto” , incluso en algunas librerías como “Dot”.

Para los que tiene problemas con este curso le recomiendo completar lo visto aquí esta lista de reproducción

https://www.youtube.com/playlist?list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A

El producto interno te permite también encontrar la proyección de un vector sobre otro vector. Esto es útil en análisis mecánico de fuerzas.

En el minuto 11:55 dice que el resultado de multiplicar un escalar por un n-vector es un escalar. Y eso no es correcto.
Multiplicando un n-vector por un escalar obtengo un n-vector que puede estar incrementado o invertido en su sentido de acuerdo a si el escalar es positivo o negativo

El profesor no transpone al vector “a” simplemente porque si al momento de hacer la multiplicación. El tema es que no explica muy bien porqué:

La cantidad de columnas del primer vector (o matriz) debe coincidir con la cantidad de filas del segundo vector (o matriz). Por eso al primer vector lo vuelve una fila, para que tenga 4 columnas, y al segundo vector lo deja como columna, para que tenga 4 filas. Entonces el producto se realiza entre 2 vectores (matrices para ser más correcto) de 1x4 y de 4x1, dando de resultado una matriz de 1x1.

Hola a todos, por acá un aporte:
La definición de producto escalar con el ángulo entre los vectores y también el resultado del producto escalar de los vectores unitarios.
Nótese que los vectores unitarios forman un ángulo de 90º entre ellos (i.j), (i.k) o (j.k) . Será un ángulo de 0º si el producto es entre un mismo vector unitario (i.i), (j.j) o k.k).
Saludos

Este profe si explica bastante bien! Felicitaciones!

  • El producto interno es una operación especial entre vectores.