Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

0 D铆as
7 Hrs
44 Min
48 Seg

BigQuery

6/19
Resources
Transcript

What is BigQuery and what are its main functionalities?

BigQuery is a fully managed, infrastructure-less enterprise data warehouse, also known as "serverless". Designed to scale up to petabytes of data, BigQuery offers robust and fast performance, helping companies manage large volumes of data efficiently. In addition, it is available in multiple regions, enabling significant geographic flexibility and high service availability of 99.999% anywhere in the world.

BigQuery Highlights

  1. Scalability and speed: BigQuery can handle petabytes of data and maintains very fast query performance, which is essential for large-scale analytics.

  2. Separate storage and compute: This separation enables greater flexibility and efficiency in resource management, optimizing costs and infrastructure usage.

  3. Data governance: Uses the concept of least privilege, granting permissions according to the user's role and profile, and allowing detailed control of access to structured data.

  4. Compatibility and extensibility: Works with ANSI standard SQL and integrates with various services through REST APIs, facilitating its use from friendly web interfaces.

  5. Integration of libraries and tools: Supports more than seven libraries for different users, allowing a wide range of functionalities.

BigQuery Architecture

BigQuery offers a flexible processing architecture that supports real-time or batch data ingest. Its modular design allows data to be stored in services such as Cloud Storage, BigQuery Storage or Big Table, and uses processing tools such as Cloud Dataflow and Cloud DataProc. Analysts can perform processing and machine learning tasks directly from Vertex AI, interacting with the aforementioned services.

How is BigQuery used for data processing?

BigQuery acts as a data warehouse, allowing the storage and processing of data from different sources in an efficient manner. It supports various file types, such as CSV, JSON, XML, among others, facilitating the integration of structured and unstructured data through federated schemas.

Integration with other services

  • Dataflow and DataProc: These tools help in the processing of data in Cloud Storage and BigQuery.

  • Vertex AI: Allows analysts to interact directly for advanced machine learning processes in BigQuery.

  • Integrated Machine Learning: BigQuery offers machine learning tools that facilitate the development and iteration of models using ANSI SQL, allowing workloads to be automated and modeling to be optimized.

What additional features does BigQuery offer?

BigQuery is not only limited to data storage and processing, but takes data analysis and visualization capabilities to another level.

Geospatial analysis and connectivity

  1. Geospatial analysis: Supports geographic data types such as geoJSON and WKT and GIS functions. These enable simple and effective geospatial analysis.

  2. Connection with Google Sheets: Facilitates users without SQL knowledge to interact with data through a familiar environment, promoting collaboration and fast search for insights.

  3. Data Studio: Data visualization is simplified through integration with Data Studio, allowing the creation of interactive charts directly from BigQuery visualizations.

By integrating these capabilities, BigQuery becomes a powerful tool for companies looking to maximize the value of their data. Through its serverless design, high scalability and advanced analytical capabilities, it is a comprehensive solution for managing and analyzing large volumes of data. Continue exploring and discover how BigQuery can transform your organization's big data management!

Contributions 7

Questions 5

Sort by:

Want to see more contributions, questions and answers from the community?

Qu茅 es BigQuery
Data warehouse empresarial totalmente administrado y serverless.
-Escala de petabytes y responde muy r谩pido
-Disponible en multiples regiones
-Separaci贸n de almacenamiento y c贸mputo.

Componentes importantes:
-Es SQL
-Rest API
-Web UI, CLI
-Librer脥a para clientes virtual

Como funciona?
A traves de un esquema federado de lectura llevamos nuestros archivos ( json, video, PDF, etc.) hacia BigQuery
-Procesamiento y transformacion
-Procesamiento: OCR, voz a texto, cl煤ster, etc.

Soy nuevo en estos temas, pero es fascinante como se manejan los datos y las herramientas para su An谩lisis

# casos de uso comunes de BigQuery: ### 1. An谩lisis de Negocios y Business Intelligence: * **An谩lisis de Ventas y Finanzas:** Analizar datos de ventas, transacciones financieras y m茅tricas clave de negocio para identificar tendencias, patrones de compra y oportunidades de mejora. * **Segmentaci贸n de Clientes:** Utilizar datos de comportamiento de clientes para segmentar y clasificar clientes seg煤n su valor, comportamiento de compra, preferencias y lealtad. * **An谩lisis de Mercado:** Realizar an谩lisis de mercado para identificar oportunidades de crecimiento, evaluar la competencia y desarrollar estrategias de marketing efectivas. ### 2. Personalizaci贸n y Recomendaciones: * **Personalizaci贸n de Contenido:** Utilizar datos de usuarios para personalizar el contenido y las ofertas, ofreciendo experiencias m谩s relevantes y atractivas. * **Recomendaciones de Productos:** Utilizar algoritmos de recomendaci贸n para sugerir productos y servicios a los usuarios bas谩ndose en sus preferencias y comportamiento de navegaci贸n. ### 3. An谩lisis de Datos en Tiempo Real: * **Monitoreo de Sistemas y Aplicaciones:** Analizar logs y eventos en tiempo real para monitorear el rendimiento de sistemas y aplicaciones, detectar problemas y tomar acciones correctivas. * **An谩lisis de Redes Sociales:** Analizar datos de redes sociales en tiempo real para medir la interacci贸n de los usuarios, identificar tendencias virales y evaluar el impacto de las campa帽as de marketing. ### 4. An谩lisis de Datos de IoT: * **Monitoreo y Optimizaci贸n de Dispositivos Conectados:** Analizar datos de sensores IoT para monitorear el rendimiento de dispositivos, prevenir fallos y optimizar procesos. * **An谩lisis Predictivo:** Utilizar datos hist贸ricos de IoT para realizar an谩lisis predictivos y anticipar eventos futuros, como mantenimiento preventivo o demanda de productos. ### 5. An谩lisis de Datos Geoespaciales: * **An谩lisis de Localizaci贸n:** Analizar datos geoespaciales para entender patrones de movimiento, comportamiento del tr谩fico, distribuci贸n de clientes y oportunidades de expansi贸n geogr谩fica. * **Visualizaci贸n de Datos Geoespaciales:** Crear mapas interactivos y visualizaciones de datos geoespaciales para comunicar insights y tomar decisiones basadas en la ubicaci贸n. ### 6. An谩lisis de Datos de Medios y Entretenimiento: * **An谩lisis de Audiencia:** Analizar datos de audiencia para comprender el comportamiento de los usuarios, evaluar el rendimiento de contenidos y optimizar estrategias de marketing. * **An谩lisis de Contenido:** Utilizar an谩lisis de texto y procesamiento de lenguaje natural para analizar contenido, comentarios de usuarios y sentimiento de la audiencia.
Arboles de decisi贸n, clusterizaci贸n, regresi贸n lineal

justo lo que necesitaba!!!

excelente