Para el reto de la semana cargué el dataset de Fashion MNIST:
Creo que es una bota jajajaja
Cómo utilizar TensorFlow 2.0 con Python
Redes neuronales con TensorFlow
Introducción a TensorFlow 2.0
Manejo y preprocesamiento de datos para redes neuronales
Uso de data pipelines
Cómo cargar bases de datos JSON
Cargar bases de datos CSV y BASE 64
Preprocesamiento y limpieza de datos
Keras datasets
Datasets generators
Aprende a buscar bases de datos para deep learning
Cómo distribuir los datos
Crear la red neural, definir capas, compilar, entrenar, evaluar y predicciones
Optimización de precisión de modelos
Métodos de regularización: overfitting y underfitting
Recomendaciones prácticas para ajustar un modelo
Métricas para medir la eficiencia de un modelo: callback
Monitoreo del entrenamiento en tiempo real: early stopping y patience
KerasTuner: construyendo el modelo
KerasTuner: buscando la mejor configuración para tu modelo
Almacenamiento y carga de modelos
Almacenamiento y carga de modelos: pesos y arquitectura
Criterios para almacenar los modelos
Fundamentos de aprendizaje por transferencia
Introducción al aprendizaje por transferencia
Cuándo utilizar aprendizaje por transferencia
Carga de sistemas pre-entrenados en Keras
API funcional de Keras
Uso sistemas pre-entrenados de TensorFlow Hub
Resultados de entrenamiento
Introducción a variables relevantes del TensorBoard
Análisis y publicación de resultados del entrenamiento
Introducción al despliegue de modelos en producción
Siguientes pasos con deep learning
Aún no tienes acceso a esta clase
Crea una cuenta y continúa viendo este curso
Aportes 6
Preguntas 0
Para el reto de la semana cargué el dataset de Fashion MNIST:
Creo que es una bota jajajaja
!wget --no-check-certificate https://storage.googleapis.com/platzi-tf2/cifar100_labels.json \
-O /tmp/cifar100_labels.json
Hay un error en uno de los print. La corrección es la siguiente:
print(cifar100_labels[y_train[num_label][0]])
Trabaje con el dataset de MNIST
from tensorflow.keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
assert x_train.shape == (60000, 28, 28)
assert x_test.shape == (10000, 28, 28)
assert y_train.shape == (60000,)
assert y_test.shape == (10000,)
num_image = 55
plt.imshow(x_train[num_image])
print(y_train[num_image])
num_image = 36
plt.imshow(x_train[num_image])
print(y_train[num_image])
Tambien cargué el dataset fashion_mnist
![](
¿Quieres ver más aportes, preguntas y respuestas de la comunidad? Crea una cuenta o inicia sesión.