Cómo utilizar TensorFlow 2.0 con Python

1

Redes neuronales con TensorFlow

2

Introducción a TensorFlow 2.0

Manejo y preprocesamiento de datos para redes neuronales

3

Uso de data pipelines

4

Cómo cargar bases de datos JSON

5

Cargar bases de datos CSV y BASE 64

6

Preprocesamiento y limpieza de datos

7

Keras datasets

8

Datasets generators

9

Aprende a buscar bases de datos para deep learning

10

Cómo distribuir los datos

11

Crear la red neural, definir capas, compilar, entrenar, evaluar y predicciones

Optimización de precisión de modelos

12

Métodos de regularización: overfitting y underfitting

13

Recomendaciones pr√°cticas para ajustar un modelo

14

Métricas para medir la eficiencia de un modelo: callback

15

Monitoreo del entrenamiento en tiempo real: early stopping y patience

16

KerasTuner: construyendo el modelo

17

KerasTuner: buscando la mejor configuración para tu modelo

Almacenamiento y carga de modelos

18

Almacenamiento y carga de modelos: pesos y arquitectura

19

Criterios para almacenar los modelos

Fundamentos de aprendizaje por transferencia

20

Introducción al aprendizaje por transferencia

21

Cu√°ndo utilizar aprendizaje por transferencia

22

Carga de sistemas pre-entrenados en Keras

23

API funcional de Keras

24

Uso sistemas pre-entrenados de TensorFlow Hub

Resultados de entrenamiento

25

Introducción a variables relevantes del TensorBoard

26

Análisis y publicación de resultados del entrenamiento

27

Introducción al despliegue de modelos en producción

28

Siguientes pasos con deep learning

A√ļn no tienes acceso a esta clase

Crea una cuenta y contin√ļa viendo este curso

API funcional de Keras

23/28
Recursos

Aportes 3

Preguntas 2

Ordenar por:

¬ŅQuieres ver m√°s aportes, preguntas y respuestas de la comunidad? Crea una cuenta o inicia sesi√≥n.

The gradient, que es una revista de inteligencia artificial, habla de que ya hay modelos muy potentes pero que que toman mucho su tiempo, por eso ya se habla de models Fundation, modelos pre entrenados que son pontentes para que sean llevados a otras areas de conocimiento

En paralelo estos siguiendo el proyecto de clasificación de tumores, hice uso del modelo NASNetLarge, pero al parecer necesito entender cómo aplicarlo mejor, ya que no logré mejorar el 60% de accuracy.

Esta clase es extremadamente util e interesante, aprendi demasiado :3