Introducción
¿Para qué sirve el cálculo?
Funciones, dominio y rango
Tipos de funciones
Cómo identificar dominio y rango de una función
Límites
El concepto de límite
Solución gráfica de los límites
Tipos de límites
Resuelve límites algebraicamente
Continuidad
La derivada
La derivada gráficamente
La definición de derivada
Obtención de derivadas utilizando la definición
Interpretando la derivada gráficamente
Derivadas de funciones algebraicas
Derivadas de una función constante y de una función con un multiplicador constante
Derivada de una función potencia
Derivada de una suma o resta de funciones
Derivada de un producto de funciones
Derivada de cociente de funciones
Derivadas de funciones trascendentes
Derivadas de funciones trigonométricas
Derivada de funciones exponenciales
Derivada de funciones logarítmicas
Bonus
Así usamos cálculo en la vida real
Regla de cadena
Qué son las funciones compuestas
Derivadas de funciones compuestas
Conclusión
Continúa con el curso de cálculo aplicado
You don't have access to this class
Keep learning! Join and start boosting your career
Derivatives are fundamental tools in calculus that allow us to understand how functions change at different points. This concept is essential in many areas of science and engineering, as they help describe characteristics such as velocity, acceleration, and the behavior of various phenomena. In this discussion, I will show you a more accessible approach to finding derivatives without having to constantly resort to limits, thanks to differentiation rules.
The derivative of a constant function is one of the most basic but essential concepts in calculus. Whenever you encounter a constant in a function, you can remember that its derivative is always zero. This principle applies to any isolated constant in a function:
This concept is especially useful when working with polynomial functions, where constant terms are omitted in the derivative process.
Now, what happens when a constant is multiplying a function? In these cases, the rule is clear: you must derive the function without altering the multiplicative constant. In other words, the constant simply "holds":
For example, if you have the function (f(x) = 5 \sqrt{x} + 2), the derivative will be: [ f'(x) = 5 \cdot \frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(2) ] At this point, you will learn how to understand each individual derivative.
In another case, if (f(x) = \frac{2}{3}(x^2 + x - 1)), we apply the same rule: [ f'(x) = \frac{2}{3} \cdot \frac{d}{dx}(x^2 + x - 1) ]
For an expression like (f(x) = \frac{3}{x - 2}), we can rewrite the function before deriving: [ f'(x) = 3 \cdot \frac{d}{dx}{left(\frac{1}{x - 2}) ]
Similarly, for (f(x) = \frac{2}{\sqrt{x} + 1}), the derivative is: [ f'(x) = 2 \cdot \frac{d}{dx}left(\frac{1}{\sqrt{x} + 1}right) ]
These examples highlight how keeping constants during derivation is critical to simplifying and solving more complex computational problems.
The differentiation rules we have reviewed are just the beginning. As you explore and study more about calculus, you will find additional rules that will allow you to solve derivatives with greater precision and complexity. So take heart that each step you take in learning calculus brings you closer to mastering these fascinating mathematical tools.
Remember that practice and application of these rules are essential to achieve mastery in calculus - keep exploring and don't hesitate to ask questions if something is not understood!
Contributions 5
Questions 2
✍️
✍️
Sólo sería hacer la derivada de una constante
f(x) = 3
f’(x) = [f(3+h)-f(3)]/h = [3-3]/h = 0/h = 0
La derivada de una constante es igual a cero, pues dicho número no varía en función de ninguna variable. Si A es una constante, f’(x)=0.
Gracias por impartir este curso, siempre es bueno reforzar conocimientos; una clase muy agradable.
Want to see more contributions, questions and answers from the community?