You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesión a prueba de IA

Antes: $249

Currency
$209
Suscríbete

Termina en:

1 Días
2 Hrs
1 Min
42 Seg
Curso Básico de Cálculo Diferencial

Curso Básico de Cálculo Diferencial

Martín E. Carrión Ramos

Martín E. Carrión Ramos

Qué son las funciones compuestas

23/25
Resources

What are composite functions?

Composite functions are a fundamental concept in differential calculus, especially because many of the functions we work with are not basic functions, but composite functions. The essence of a composite function is to evaluate one function using another. These types of functions reflect real-world situations where one thing depends on another, such as health depending on food.

There are different notations for expressing composite functions:

  • ( f \circ g(x) ) is read as "f of g of x", where f is the outer function and g is the inner function.
  • Reversing the composition gives ( g \circ f(x) ).

An important rule is that the inner function must generate a range that is compatible with the domain of the outer function. For example, if the outer function does not accept negative numbers, the inner function should not produce them.

How is function composition performed?

To understand composition, let us examine examples with specific functions.

Suppose we have ( f(x) = \sqrt{x} ) and ( g(x) = x + 2 ). Then:

  1. Composition ( f ÷sqrt g(x) ):
    [ f(g(x)) = \sqrt{x + 2} ]

    Here we substitute x in f for ( g(x) = x + 2 ).

  2. Composition ( g \sqrt f(x) ):
    [ g(f(x)) = g(\sqrt{x}) = \sqrt{x} + 2 ]

    In this one, we substitute x in g for ( f(x) = \sqrt{x} ).

Both compositions lead to different results, and often in calculus we are interested in working with one of them specifically.

How do I recognize a composite function in complex problems?

Sometimes we encounter functions that are already composed. Identifying them is key to applying derivation rules and other mathematical procedures. Consider the example:

( h(x) = \frac{1}{x - x^2} )

We can decompose it as follows:

  • External function ( f(x) ): ( \frac{1}{x} )
  • Internal function ( g(x) ): ( x - x^2 )

This is verified by composing back:

[ f(g(x)) = \frac{1}{x - x^2} ]

The same principle applies to other expressions, such as ( (2-x)^2 ). Here:

  • ( f(x) ) could be: ( x^2 )
  • ( g(x) ) could be: ( 2 - x ).

We check:

[ f(g(x)) = (2-x)^2 ]

What are the practical applications of understanding composite functions?

Composite functions are ubiquitous in various fields, from engineering to economics:

  • In physics: calculating variations in systems that depend on several factors.
  • In economics: Modeling trends where the outcome depends on multiple variables.
  • Data analytics: Create predictive models with layers of functions by composing raw data into meaningful values.

Proficiency in composite functions will allow you to tackle more complex problems and model realistic situations effectively. Keep practicing these techniques and you will notice how your mathematical understanding becomes clearer every day - keep learning and sharpening your skills!

Contributions 9

Questions 1

Sort by:

Want to see more contributions, questions and answers from the community?

Extraño los retos 😭

al principio me pareció un poco enredado, pero a medida que iba tratando de desarrollar el ejemplo antes que profe fui entendiendo de donde salia cada término y por qué ese orden.

Gracias profe te haces entender muy bien!!

Gracias por el compromiso y dedicación.

Gracias, buen aporte

¿Alguien por acá que hizo una carrera donde se viera cálculo? Es chévere no ver algunas clases y ver otras en alta velocidad y darse cuenta que aún somos dignos.

Aporte
Excelente todo, pero siento que faltaron los retos para practicar este tema 😢

Que malos recuerdos tenia sobre las funciones compuestas pero ahora hasta me parecen algo muy sencillo, es raro como puede cambiar la dificultad de algo solo por como te lo enseñan, que buen profe.

Faltaba retos este tema esta interesante