En el primer ejercicio el profesor se olvidó del (-1).
Esto cambia de signo el resultado.
Introducción
¿Para qué sirve el cálculo?
Funciones, dominio y rango
Tipos de funciones
Cómo identificar dominio y rango de una función
Límites
El concepto de límite
Solución gráfica de los límites
Tipos de límites
Resuelve límites algebraicamente
Continuidad
La derivada
La derivada gráficamente
La definición de derivada
Obtención de derivadas utilizando la definición
Interpretando la derivada gráficamente
Derivadas de funciones algebraicas
Derivadas de una función constante y de una función con un multiplicador constante
Derivada de una función potencia
Derivada de una suma o resta de funciones
Derivada de un producto de funciones
Derivada de cociente de funciones
Derivadas de funciones trascendentes
Derivadas de funciones trigonométricas
Derivada de funciones exponenciales
Derivada de funciones logarítmicas
Bonus
Así usamos cálculo en la vida real
Regla de cadena
Qué son las funciones compuestas
Derivadas de funciones compuestas
Conclusión
Continúa con el curso de cálculo aplicado
You don't have access to this class
Keep learning! Join and start boosting your career
In mathematics, the chain rule is essential for the differentiation of composite functions. This concept is crucial, since most functions apply this rule. Basically, it allows you to derive complex functions by breaking them down into external and internal functions. First, the external function is derived without altering the internal function, and then it is multiplied by the derivative of the internal function. This sequential process justifies the term "chain". Let us see how it is applied in different contexts.
To understand the procedure, let us consider an example. Suppose we have a function f(x) = -√(x + 2). Here, the constant multiple is -1. We decompose the function into its outer part, the square root, and the inner part, a linear function. We proceed to:
Derive the outer function without touching the inner one:
h(x) = √x = x^(1/2)h'(x) = (1/2)x^(-1/2) = 1 / (2√x).
Substitute x in the derivative of h(x) for the inner function:
1 / (2√(x + 2))
Multiply by the derivative of the inner function (x + 2):
The derivative is 1, resulting in the original function:
f'(x) = -1 * 1 / (2√(x + 2))
A more complex case arises when we have functions with several levels such as h(f(g(x))). The chain rule is applied successively to each level:
This illustrates the versatility of the chain, applicable even to complex compositions, thus ensuring correct differentiation in advanced calculations such as in engineering and business.
Let's see an example applying this knowledge to a function with a constant multiple:
f(x) = (1/7) * (1 - x)^2.
The outer function is the power, and the inner function is the operation inside the parenthesis. We derive:
h(x) = x^2h'(x) = 2x.
Applying the chain rule, we substitute:
f'(x) = (1/7) * (2 * (1 - x)^1) * -1.
This translates to:
f'(x) = - (2/7) * (1 - x)
This technique also applies to trigonometric functions. For example, given f(x) = sin(2x):
The derivative of sine is cosine:
f'(x) = cos(2x) * d(2x)/dx.
We calculate the derivative of the internal derivative, which is 2. Thus:
f'(x) = 2 * cos(2x).
When dealing with functions like e^(√x) / 3:
The outer function is e and the inner function is √x. We apply the same technique:
f'(x) = (1/3) * e^(√x) * d(√x)/dx.
We derive the square root function:
1 / (2√x)
The final result is:
f'(x) = (1/6√x) * e^(√x).
The complexity of this rule emphasizes the importance of practice. Several exercises mix various rules, so patience and dedication are essential. It is always helpful to share with the community and exercise everything you have learned before looking for answers. Remember, the key is to keep practicing and to rely on the community if any doubt arises. Cheer up!
Contributions 12
Questions 4
En el primer ejercicio el profesor se olvidó del (-1).
Esto cambia de signo el resultado.
el resultado del ejemplo 1 teniendo en cuenta el -1 adelante

Estas son mis respuestas al reto 7 😃
Gracias por tu esfuerzo
Gracias buen aporte
Puedo simplificar esta expresión
 = 3, falta ese 3.
La respuesta de la 8 es:
2^(1 + 3 x) (-cos(1 - x) + 3 log(2) sen(1 - x))
Want to see more contributions, questions and answers from the community?