El ancho es (90-3x)/2, porque son dos lados
Introducción
¿Para qué sirve el cálculo?
Funciones, dominio y rango
Tipos de funciones
Cómo identificar dominio y rango de una función
Límites
El concepto de límite
Solución gráfica de los límites
Tipos de límites
Resuelve límites algebraicamente
Continuidad
La derivada
La derivada gráficamente
La definición de derivada
Obtención de derivadas utilizando la definición
Interpretando la derivada gráficamente
Derivadas de funciones algebraicas
Derivadas de una función constante y de una función con un multiplicador constante
Derivada de una función potencia
Derivada de una suma o resta de funciones
Derivada de un producto de funciones
Derivada de cociente de funciones
Derivadas de funciones trascendentes
Derivadas de funciones trigonométricas
Derivada de funciones exponenciales
Derivada de funciones logarítmicas
Bonus
Así usamos cálculo en la vida real
Regla de cadena
Qué son las funciones compuestas
Derivadas de funciones compuestas
Conclusión
Continúa con el curso de cálculo aplicado
No tienes acceso a esta clase
¡Continúa aprendiendo! Únete y comienza a potenciar tu carrera
Convierte tus certificados en títulos universitarios en USA
Antes: $249
Paga en 4 cuotas sin intereses
Termina en:
Martín E. Carrión Ramos
Aportes 15
Preguntas 2
El ancho es (90-3x)/2, porque son dos lados
Primer aporte 😄
Es divertido hacer el calculo a mano, pero si es mas grande mejor que lo haga la computadora.
Si hacen un curso solo de aplicaciones seria genial.
Es interesante saber para que sirve el cálculo en la vida real, en la escuela tradicional lo llegué hasta aborrecer debido a que lo encontraba inútil, agradezco al profesor Martín y a Platzi a cambiar la forma de pensar a la hora de obtener conocimiento de calidad en lo cual la escuela tradicional tanto nos falló.
Hola, esta clase me parecio muy interesante y quizé dejar este aporte.
Otro estudiante aclaro que debería ser (90-3x)/2
en lugar de (90-3x)
V = (90-3x)/2 * (40-2x) * x
V = 3x³-150x²+1800x
V’ = 9x²-300x+1800
Cuando V’(x) = 0
x1 = 50/3 + 10 * (7)^(1/2)/3 x1 ≈ 25.4858
x2 = 50/3 - 10 * (7)^(1/2)/3 x2 ≈ 7.8474
Entonces V(x2) ≈ 6337.8353
Por lo que x debería ser 7.8474
para obtener un volumen de 6337.8353
Que onda, se salto del 21 al 24 :v
Un excelente problema práctico.
Función cúbica f(X) = 6X^3 - 300X^2 +3600X. Lo desarrollé derivando; nos queda una parábola (18X^2 -600X+ 3600); simplificándola nos queda **3X^2 -100X + 600 = 0 **ahí encontramos los puntos de corte con el eje X, utilizamos la ecuación cuadrática general, X1 = 25.485 & X2 =7.847. Estos valores los remplazamos en una de las dimensiones de la caja y nos damos cuenta que el valor X1 nos da una medida negativa, o sea que el valor correcto es X2.
Remplazamos y nos queda que a = 24.306 cm
**b = 66.459 cm **y h = X = 7.847 cm.
El recurso de la aplicación Wolfran, muy bueno
Excelente clase !!!
waw me encanto esta clase a darle con todo y seguir practicando, genial herramienta para calcular las derivadas
Cuando corrigieron el orden de las clases?
esta era la clase 22 x)
Veo que estas herramientas son super útiles, no entiendo porque los maestros de la Universidad no dan la facilidad de utilizar estas herramientas?
¿Quieres ver más aportes, preguntas y respuestas de la comunidad?