Comprender la visión computarizada

1

¿Por qué aprender computer vision?

2

¿Qué es la visión computarizada?

3

Tipos de visión computarizada

4

Introducción a object detection: clasificación + localización

5

Aprende a identificar problemas

Dimensionamiento de proyecto de visión computarizada

6

Cómo definir los tiempos de tu proyecto

7

Cómo costear tu proyecto

8

Cómo identificar los roles necesarios en el proyecto

9

Producto mínimo viable en computer vision

Obtención y procesamiento de los datos

10

Obtención de datos para tu proyecto

11

Limpieza de la base de datos

12

Distribución de datos en entrenamiento y testeo

13

Etiquetado de los datos de test

14

Etiquetado de los datos de train

15

Transforma tu base de datos a TFRecord

16

Transformar CSV a TFRecord

Entrena, testea y optimiza tus modelos

17

Librerías a importar durante fase de entrenamiento

18

Fase de entrenamiento del modelo

19

Balanceo de imágenes y data augmentation

20

Entrena, evalua y optimiza con TensorBoard

21

Validación de modelo en un entorno de ejecución

22

Re-entrenamiento del modelo para obtener mejores resultados

23

Seguimiento de centroides con OpenCV

24

Configuración de los centroides con OpenCV

25

Algoritmo de dirección y conteo con OpenCV

26

Crea un ciclo de entrenamiento de tu modelo: MLOps

Producto con visión computarizada en producción

27

Prepara tu entorno en Google Cloud Platform

28

Carga y preprocesamiento de modelos

29

Postprocesamiento de modelos

30

Despliega y consume tu modelo en producción

31

Bonus: aprende a apagar las máquinas de GCP para evitar sobrecostos

Siguientes pasos en inteligencia artificial

32

Siguientes pasos en inteligencia artificial

Aún no tienes acceso a esta clase

Crea una cuenta y continúa viendo este curso

Cómo identificar los roles necesarios en el proyecto

8/32
Recursos

Aportes 2

Preguntas 0

Ordenar por:

¿Quieres ver más aportes, preguntas y respuestas de la comunidad? Crea una cuenta o inicia sesión.

Aquí dejo un link a un portal donde reciben voluntarios de todo el mundo, para trabajar gratuitamente en proyectos reales de inteligencia artificial.

The World’s Platform for Impact with AI
https://omdena.com/

8. ¿Cómo identificar los roles necesarios en el proyecto?

Los proyectos de Machine Learning siempre necesitan:

Experto en el área + Equipo de ML

Roles

  • Busca tener un par de expertos en tu equipo
  • Consultores externos para los vacíos de conocimiento.
  • Integra un Full Stack a tu proyecto (Front End + Back End + Base de datos).
  • Diversidad en tu equipo.