Comprender la visi贸n computarizada

1

驴Por qu茅 aprender computer vision?

2

驴Qu茅 es la visi贸n computarizada?

3

Tipos de visi贸n computarizada

4

Introducci贸n a object detection: clasificaci贸n + localizaci贸n

5

Aprende a identificar problemas

Dimensionamiento de proyecto de visi贸n computarizada

6

C贸mo definir los tiempos de tu proyecto

7

C贸mo costear tu proyecto

8

C贸mo identificar los roles necesarios en el proyecto

9

Producto m铆nimo viable en computer vision

Obtenci贸n y procesamiento de los datos

10

Obtenci贸n de datos para tu proyecto

11

Limpieza de la base de datos

12

Distribuci贸n de datos en entrenamiento y testeo

13

Etiquetado de los datos de test

14

Etiquetado de los datos de train

15

Transforma tu base de datos a TFRecord

16

Transformar CSV a TFRecord

Entrena, testea y optimiza tus modelos

17

Librer铆as a importar durante fase de entrenamiento

18

Fase de entrenamiento del modelo

19

Balanceo de im谩genes y data augmentation

20

Entrena, evalua y optimiza con TensorBoard

21

Validaci贸n de modelo en un entorno de ejecuci贸n

22

Re-entrenamiento del modelo para obtener mejores resultados

23

Seguimiento de centroides con OpenCV

24

Configuraci贸n de los centroides con OpenCV

25

Algoritmo de direcci贸n y conteo con OpenCV

26

Crea un ciclo de entrenamiento de tu modelo: MLOps

Producto con visi贸n computarizada en producci贸n

27

Prepara tu entorno en Google Cloud Platform

28

Carga y preprocesamiento de modelos

29

Postprocesamiento de modelos

30

Despliega y consume tu modelo en producci贸n

31

Bonus: aprende a apagar las m谩quinas de GCP para evitar sobrecostos

Siguientes pasos en inteligencia artificial

32

Siguientes pasos en inteligencia artificial

A煤n no tienes acceso a esta clase

Crea una cuenta y contin煤a viendo este curso

Fase de entrenamiento del modelo

18/32
Recursos

Instalar la librer铆a de object Detection en Google Colab:

import os
%cd /content
!git clone --quiet https://github.com/tensorflow/models.git
%cd /content/models/
#!git checkout 58d19c67e1d30d905dd5c6e5092348658fed80af
!apt-get update && apt-get install -y -qq protobuf-compiler python-pil python-lxml python-tk
!pip install -q Cython contextlib2 pillow lxml matplotlib
!pip install -q pycocotools
%cd /content/models/research
!protoc object_detection/protos/*.proto --python_out=.
os.environ['PYTHONPATH'] += ':/content/models/research/:/content/models/research/slim/'
!python object_detection/builders/model_builder_test.py

Descargar los modelos pre-entrenados en este caso SSD + MobileNetV2

!wget --no-check-certificate http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz \
-O /content/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz

Aportes 1

Preguntas 0

Ordenar por:

驴Quieres ver m谩s aportes, preguntas y respuestas de la comunidad? Crea una cuenta o inicia sesi贸n.

C贸digo para descargar los modelos pre-entrenados en este caso SSD + MobileNetV2

!wget --no-check-certificate http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz \
-O /content/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz