Introducci贸n a LangChain

1

Desarrollo de aplicaciones con LLM utilizando LangChain

2

Estructura y m贸dulos de LangChain

3

Uso de modelos Open Source de Hugging Face

4

Uso de modelos de OpenAI API

5

Prompt templates de LangChain

6

Cadenas en LangChain

7

Utility chains

8

RetrievalQA chain

9

Foundational chains

Quiz: Introducci贸n a LangChain

Casos de uso de LangChain

10

Casos de uso de LangChain

11

驴C贸mo utilizar LangChain en mi equipo?

Quiz: Casos de uso de LangChain

Manejo de documentos con 铆ndices

12

驴C贸mo manejar documentos con 铆ndices en LangChain?

13

La clase Document

14

Document Loaders: PDF

15

Document Loaders: CSV con Pandas DataFrames

16

Document Loaders: JSONL

17

Document Transformers: TextSplitters

18

Proyecto de Chatbot: configuraci贸n de entorno para LangChain y obtenci贸n de datos

19

Proyecto de Chatbot: creaci贸n de documents de Hugging Face

Quiz: Manejo de documentos con 铆ndices

Embeddings y bases de datos vectoriales

20

Uso de embeddings y bases de datos vectoriales con LangChain

21

驴C贸mo usar embeddings de OpenAI en LangChain?

22

驴C贸mo usar embeddings de Hugging Face en LangChaing?

23

Chroma vector store en LangChain

24

Proyecto de Chatbot: ingesta de documents en Chroma

25

RetrievalQA: cadena para preguntar

26

Proyecto de Chatbot: cadena de conversaci贸n

27

Proyecto de Chatbot: RetrievalQA chain

Quiz: Embeddings y bases de datos vectoriales

Chats y memoria con LangChain

28

驴Para qu茅 sirve la memoria en cadenas y chats?

29

Uso de modelos de chat con LangChain

30

Chat prompt templates

31

ConversationBufferMemory

32

ConversationBufferWindowMemory

33

ConversationSummaryMemory

34

ConversationSummaryBufferMemory

35

Entity memory

36

Proyecto de Chatbot: chat history con ConversationalRetrievalChain

Quiz: Chats y memoria con LangChain

Evoluci贸n del uso de LLM

37

LangChain y LLM en evoluci贸n constante

No tienes acceso a esta clase

隆Contin煤a aprendiendo! 脷nete y comienza a potenciar tu carrera

Document Transformers: TextSplitters

17/37
Recursos

Aportes 1

Preguntas 1

Ordenar por:

驴Quieres ver m谩s aportes, preguntas y respuestas de la comunidad?

o inicia sesi贸n.

鈿狅笍 Una advertencia para que s铆 usen la data del PDF de crypto.

Antes de cargar documents con el text_splitter recuerden correr nuevamente el c贸digo que carga el archivo public_key_cryptography.pdf que se aprende en la Clase 14 Document Loaders: PDF, de lo contrario van cargar la data del JSON o del CSV y no resolver谩n las queries que indica el profe. 馃

from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader("./public_key_cryptography.pdf")
data = loader.load()