pueden tambien probar este modelo es un poco pesado pero es multilenguaje con una longitud de 1024 mayor a los 384 y 724 moestrados en la clase
embeddings_hg = HuggingFaceEmbeddings(model_name=“intfloat/multilingual-e5-large”)
Introducción a LangChain
Desarrollo de aplicaciones con LLM utilizando LangChain
Estructura y módulos de LangChain
Uso de modelos Open Source de Hugging Face
Uso de modelos de OpenAI API
Prompt templates de LangChain
Cadenas en LangChain
Utility chains
RetrievalQA chain
Foundational chains
Quiz: Introducción a LangChain
Casos de uso de LangChain
Casos de uso de LangChain
¿Cómo utilizar LangChain en mi equipo?
Quiz: Casos de uso de LangChain
Manejo de documentos con índices
¿Cómo manejar documentos con índices en LangChain?
La clase Document
Document Loaders: PDF
Document Loaders: CSV con Pandas DataFrames
Document Loaders: JSONL
Document Transformers: TextSplitters
Proyecto de Chatbot: configuración de entorno para LangChain y obtención de datos
Proyecto de Chatbot: creación de documents de Hugging Face
Quiz: Manejo de documentos con índices
Embeddings y bases de datos vectoriales
Uso de embeddings y bases de datos vectoriales con LangChain
¿Cómo usar embeddings de OpenAI en LangChain?
¿Cómo usar embeddings de Hugging Face en LangChaing?
Chroma vector store en LangChain
Proyecto de Chatbot: ingesta de documents en Chroma
RetrievalQA: cadena para preguntar
Proyecto de Chatbot: cadena de conversación
Proyecto de Chatbot: RetrievalQA chain
Quiz: Embeddings y bases de datos vectoriales
Chats y memoria con LangChain
¿Para qué sirve la memoria en cadenas y chats?
Uso de modelos de chat con LangChain
Chat prompt templates
ConversationBufferMemory
ConversationBufferWindowMemory
ConversationSummaryMemory
ConversationSummaryBufferMemory
Entity memory
Proyecto de Chatbot: chat history con ConversationalRetrievalChain
Quiz: Chats y memoria con LangChain
Evolución del uso de LLM
LangChain y LLM en evolución constante
No tienes acceso a esta clase
¡Continúa aprendiendo! Únete y comienza a potenciar tu carrera
No se trata de lo que quieres comprar, sino de quién quieres ser. Aprovecha el precio especial.
Antes: $249
Paga en 4 cuotas sin intereses
Termina en:
Omar Espejel
Aportes 6
Preguntas 1
pueden tambien probar este modelo es un poco pesado pero es multilenguaje con una longitud de 1024 mayor a los 384 y 724 moestrados en la clase
embeddings_hg = HuggingFaceEmbeddings(model_name=“intfloat/multilingual-e5-large”)
¿Quieres ver más aportes, preguntas y respuestas de la comunidad?