¿Cómo funcionan los embeddings?

1

Cómo Entender y Aplicar Embeddings en IA: De Teoría a Práctica

2

Introducción a One-Hot Encoding y TF-IDF en IA

3

Representación Vectorial de Palabras

4

Evaluación de Similitudes Semánticas: Métodos y Aplicaciones

Quiz: ¿Cómo funcionan los embeddings?

Creación de embeddings

5

Creación y entrenamiento de modelos Word2Vec con Gensim

6

Procesamiento y Limpieza de Datos para IA con Word2Vec y Gensim

7

Entrenamiento de Modelos Word2Vec con GenSim y Análisis de Similitud

8

Word2Vec: Entrenando IA para Comprender el Lenguaje

Quiz: Creación de embeddings

Usando embeddings preentrenados

9

Uso práctico de Sentence Transformers en procesamiento de textos

10

Análisis Semántico: Buscar Textos con Sentence Transformers

11

Manejo de Embeddings con OpenAI: API, Instalación y Datasets

12

Manejo y Visualización de Embeddings con OpenAI: Guía Práctica

13

Creación de un Motor de Búsqueda Semántico con Python

14

Transformación de Texto a Embeddings con Sentence Transformer

Quiz: Usando embeddings preentrenados

Bases de datos vectoriales

15

Qué es y cómo usar una base de datos vectorial

16

Gestión de Bases de Datos Vectoriales con ChromaDB: Instalación y Uso

17

Generación y manejo de embeddings en Chroma con Sentence Transformer

18

Consultas avanzadas y filtrado en bases de datos con Chroma

19

Cargar colección de Chroma previamente creada

20

Configuración y Uso de Pinecone: Desde la Instalación hasta la Inserción de Datos

21

Optimización de Ingesta de Datos en Pinecone: Procesos y Estrategias

22

Consultas Avanzadas en Pinecone: De Texto a Vector y Filtros

23

Carga de índices en Pinecone: Gestión eficiente en la nube

24

Carga de embeddings en Pinecone para búsqueda semántica

25

Creación de buscador semántico con Gradio y Sentence Transformer

Quiz: Bases de datos vectoriales

Conclusiones

26

Potenciando los LLMs: Integración de Embeddings y Datos Vectoriales

No tienes acceso a esta clase

¡Continúa aprendiendo! Únete y comienza a potenciar tu carrera

No se trata de lo que quieres comprar, sino de quién quieres ser. Invierte en tu educación con el precio especial

Antes: $249

Currency
$209

Paga en 4 cuotas sin intereses

Paga en 4 cuotas sin intereses
Suscríbete

Termina en:

12 Días
14 Hrs
12 Min
46 Seg

Carga de índices en Pinecone: Gestión eficiente en la nube

23/26
Recursos

Aportes 3

Preguntas 0

Ordenar por:

¿Quieres ver más aportes, preguntas y respuestas de la comunidad?

La plataforma web de pinecone es supremamente relevante para mejorar los conocimientos en vector-stores
Resumen: ■■■■■■ En pinecone podemos cargar nuestro índice directamente desde el respositorio de la nube y hacerle consultas a nuestra colección, solo requerimos la API Key, el ambiente y el nombre de la colección. Es decir podríamos terminar las sesiones de colab sin temor a la pérdida de datos sin persistir, iniciar las instancias y cargar nuestros datos.
Ahora el código para cargar el índice con la nueva API es así: `index = pc.Index('movies-embeddings')`