Fundamentos de MLOps y tracking de modelos

1

驴Qu茅 es MLOps y para qu茅 sirve?

2

Tracking de modelos en localhost con MLflow

3

Tracking de modelos en localhost: directorio personalizado

4

Etapas del ciclo de MLOps

5

Componentes de MLOps

6

Tracking de modelos con MLflow y SQLite

7

Tracking de modelos con MLflow en la nube

Tracking del ciclo de vida de modelos de machine learning

8

Tracking de experimentos con MLflow: preprocesamiento de datos

9

Tracking de experimentos con MLflow: definici贸n de funciones

10

Tracking de experimentos con MLflow: tracking de m茅tricas e hiperpar谩metros

11

Tracking de experimentos con MLflow: reporte de clasificaci贸n

12

Entrenamiento de modelos baseline y an谩lisis en UI de MLflow

13

MLflow Model Registry: registro y uso de modelos

14

Registro de modelos con mlflow.client

15

Testing de modelo desde MLflow con datos de prueba

16

驴Para qu茅 sirve el tracking de modelos en MLOps?

Orquestaci贸n de pipelines de machine learning

17

Tasks con Prefect

18

Flows con Prefect

19

Flow de modelo de clasificaci贸n de tickets: procesamiento de datos y features

20

Flow de modelo de clasificaci贸n de tickets: integraci贸n de las tasks

21

Flow de modelo de clasificaci贸n de tickets: ejecuci贸n de tasks

22

驴C贸mo se integra la orquestaci贸n en MLOps?

Despliegue de modelo de machine learning

23

Despligue con Docker y FastAPI: configuraci贸n y requerimientos

24

Despligue con Docker y FastAPI: definici贸n de clases y entry point

25

Despligue con Docker y FastAPI: procesamiento de predicciones en main app

26

Despligue con Docker y FastAPI: configuraci贸n de la base de datos

27

Despliegue y pruebas de modelo de machine learning en localhost

28

Despliegue y pruebas de modelo de machine learning en la nube

29

驴Qu茅 hacer con el modelo desplegado?

Monitoreo de modelo de machine learning en producci贸n

30

驴C贸mo monitorear modelos de machine learning en producci贸n?

31

Entrenamiento de modelo baseline

32

Preparar datos para crear reporte con Evidently

33

An谩lisis de la calidad de los datos con Evidently

34

Creaci贸n de reportes con Grafana

35

驴C贸mo mejorar tus procesos de MLOps?

You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

0 D铆as
10 Hrs
1 Min
8 Seg

Flow de modelo de clasificaci贸n de tickets: procesamiento de datos y features

19/35
Resources

How to implement a pipeline for ticket classification?

Developing a robust machine learning pipeline is essential to handle automated data analysis processes. In this context, we will implement a pipeline focused on ticket classification, integrating data processing and model training processes in an efficient flow using tools such as Visual Studio Code and relevant libraries.

How to set up the working environment?

Before starting to develop our pipeline, it is essential to prepare the working environment. Two important files are provided:

  1. config.py:
  • Houses crucial variables for the workflow, including data storage paths and model parameter settings.

  • It allows versatility by including a configurable version, helping to identify specific pipeline executions.

    # Basic example structureconfig = { "data_path": "processed_data_path", "version": 2, "language": "English", "filename_input": "input_name", "model_params": {"param1": "value1", "param2": "value2"},}
  1. utils.py:
  • Includes auxiliary functions not defined as tasks, but useful for general workflow, such as decoding tags or storing and loading objects with picle.

How to integrate tasks in the flow?

Starting with the flow development, a number of libraries are imported:

  • Scikit-learn for training and model metrics.
  • Prefect to orchestrate the pipeline.
  • Custom modules for text processing and feature extraction.

How to define a text processing task?

Creating a task that handles text processing is essential to prepare data for the model.

from prefect import task
 @task(retries=3, retry_delay_seconds=60, name="textProcessingTask", tags=["data_processing"])def text_processing(language: str, filename: str, version: int): processor = TextProcessingProcessor(language) processed_data = processor.run(filename, version) return processed_data

How is feature extraction executed?

Feature extraction allows you to structure the data more effectively for the model.

@task(retries=3, retry_delay_seconds=60, name="featureExtractionTask", tags=["feature_engineering"])def feature_extraction(data_path: str, version: int): feature_processor = FeatureExtractionProcessor() features = feature_processor.run(data_path, version) return features

How is the whole pipeline executed?

Once the tasks are defined, they are integrated into a flow:

from prefect import Flow
 # Flow definitionwith Flow("Ticket Classification Pipeline") as flow: processed_data = text_processing(config['language'], config['filename_input'], config['version']) features = feature_extraction(config['data_path'], config['version'])
flow.run().

This flow first runs the text processing and then the feature extraction, ensuring that the data is properly prepared for the model.

What are the next steps?

With the pipeline in place, the next step will be to integrate new tasks to complete the execution of the processes required for model training and evaluation. This includes tasks to apply transformations to the data, handle hyperparameters, and evaluate the accuracy of the model. Continuing to explore and improve the robustness of your pipeline will ensure not only accurate, but also efficient results, which is critical for any machine learning project.

Contributions 0

Questions 1

Sort by:

Want to see more contributions, questions and answers from the community?