Fundamentos de MLOps y tracking de modelos

1

驴Qu茅 es MLOps y para qu茅 sirve?

2

Tracking de modelos en localhost con MLflow

3

Tracking de modelos en localhost: directorio personalizado

4

Etapas del ciclo de MLOps

5

Componentes de MLOps

6

Tracking de modelos con MLflow y SQLite

7

Tracking de modelos con MLflow en la nube

Tracking del ciclo de vida de modelos de machine learning

8

Tracking de experimentos con MLflow: preprocesamiento de datos

9

Tracking de experimentos con MLflow: definici贸n de funciones

10

Tracking de experimentos con MLflow: tracking de m茅tricas e hiperpar谩metros

11

Tracking de experimentos con MLflow: reporte de clasificaci贸n

12

Entrenamiento de modelos baseline y an谩lisis en UI de MLflow

13

MLflow Model Registry: registro y uso de modelos

14

Registro de modelos con mlflow.client

15

Testing de modelo desde MLflow con datos de prueba

16

驴Para qu茅 sirve el tracking de modelos en MLOps?

Orquestaci贸n de pipelines de machine learning

17

Tasks con Prefect

18

Flows con Prefect

19

Flow de modelo de clasificaci贸n de tickets: procesamiento de datos y features

20

Flow de modelo de clasificaci贸n de tickets: integraci贸n de las tasks

21

Flow de modelo de clasificaci贸n de tickets: ejecuci贸n de tasks

22

驴C贸mo se integra la orquestaci贸n en MLOps?

Despliegue de modelo de machine learning

23

Despligue con Docker y FastAPI: configuraci贸n y requerimientos

24

Despligue con Docker y FastAPI: definici贸n de clases y entry point

25

Despligue con Docker y FastAPI: procesamiento de predicciones en main app

26

Despligue con Docker y FastAPI: configuraci贸n de la base de datos

27

Despliegue y pruebas de modelo de machine learning en localhost

28

Despliegue y pruebas de modelo de machine learning en la nube

29

驴Qu茅 hacer con el modelo desplegado?

Monitoreo de modelo de machine learning en producci贸n

30

驴C贸mo monitorear modelos de machine learning en producci贸n?

31

Entrenamiento de modelo baseline

32

Preparar datos para crear reporte con Evidently

33

An谩lisis de la calidad de los datos con Evidently

34

Creaci贸n de reportes con Grafana

35

驴C贸mo mejorar tus procesos de MLOps?

You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

2 D铆as
16 Hrs
8 Min
1 Seg

Preparar datos para crear reporte con Evidently

32/35
Resources

How to improve a classification model with Support Vector Classifier?

The development and improvement of classification models are essential in the field of machine learning. In this context, a second approach using Support Vector Classifier (SVC) has been proposed to improve the simplicity of the initial base model. The importance of this approach lies in its ability to handle multiclass classification and improve the accuracy of the model.

What are the key steps in model creation?

To implement an efficient SVC model, several carefully structured steps were carried out:

  1. Data transformation: Data transformation techniques such as inverse frequency were used to prepare the data for the model.

  2. Data partitioning: Data were separated into training and test sets to ensure that the model can generalize to new data.

  3. Model definition: A Support Vector Machine Classifier was configured by specifying attributes such as kernel and class weight, as well as setting a seed to ensure model reproducibility.

  4. Model Tuning: The model was trained with the transformed training data and evaluated using a test data set, and the predictions were examined for necessary adjustments.

  5. Model evaluation: A report was generated with the test data to evaluate the model's performance on the predicted classes.

How are sparse matrices processed?

Working with sparse matrices is common when using techniques such as frequency inverse, and can involve additional complexities. In this model:

  • The rows of the matrix represented individual records, while the columns corresponded to single words.
  • To simplify the analysis and avoid the increase in dimensions that such sparse matrices can cause, an alternative technique was employed that involved summing components in a weighted manner.
  • This was done to condense the matrix information into a single scalar value, thus improving data handling and analysis.

How are predictions and references stored and used?

It is crucial to consider how predictions and reference data are managed when building an effective model:

  • Predictions: Predictions were stored and added to the training set, allowing comparisons with actual labels and adjustments to the model.
  • Data references: Reference data, or benchmark data, was linked to the test set for use in data quality studies and data variance analysis.

Why is data preparation important for Evidently?

The use of tools such as Evidently for data quality requires a specific format to ensure proper analysis:

  • Pre-transformations: label values and predictions were transformed to appropriate data types, such as integers.
  • Simplified datasets: Only the necessary columns were selected in a format suitable for Evidently, avoiding complex data structures.

What next after data transformation?

With the data now transformed, you are ready to perform a data quality analysis, verifying the model's predictions against a reference dataset and real data. This step not only evaluates the effectiveness of the model, but also helps ensure its robustness over time.

Continue to explore the capabilities of SVC and experiment by creating your own baseline model. Don't forget to share your results and learn from the experiences of other students and look forward to the next lesson!

Contributions 1

Questions 0

Sort by:

Want to see more contributions, questions and answers from the community?

Estoy demasiado confundido, Aveces siento que es un curso de mlflow, aveces siento que es un curso de codigo de modelos, una cosa no es como se modela, otra no es como se utilza ese mlflow?, o mlflow tambien es para modelar, ando demasiado perdido