Fundamentos de criptografía
Las cartas secretas de María Estuardo, reina de Escocia
Introducción a la Criptografía
Encripción y Estrategias de Ofuscación
Criptografía Clásica
Conceptos Criptográficos
Aleatoriedad
Manejo de Aleatoriedad en JavaScript
Cryptoanálisis y Seguridad de Cifrado
Seguridad Criptográfica
Criptografía Simétrica
Ciphers
Advanced Encryption Standard
Cifrar y descrifrar archivos con JavaScript
Seguridad a través de Hashes
Funciones de hash comunes
Criptografía Asimétrica
Aritmética modular en Criptotografía Asimétrica
Intercambio de llaves y el problema del logaritmo discreto
Algoritmo de Diffie-Hellman
Cifrar mensajes con el algoritmo de Deffie-Hellman.
RSA y firma digital
Implementar Algoritmo de RSA y firma digital
Criptografía de Curvas Elípticas
ECDSA y tipos de curvas
Criptografía Moderna
Infraestructura de llave pública (PKI)
Sistemas de pruebas interactivos
Computación Cuántica
Investigación en Criptografía
You don't have access to this class
Keep learning! Join and start boosting your career
The RCA algorithm, also called RSA, is one of the best known asymmetric cryptographic algorithms used in cryptography. Unlike the Diffie-Hellman algorithm, it is not only used for key exchange, but also for encrypting and digitally signing data. This algorithm is deeply related to number theory and group theory.
In cryptography, groups are defined as sets of elements with an operation that applies between them. For a set of numbers to form a multiplicative group, each number must have a multiplicative inverse. For example, if we define a group with the integers 1 to 4, only 1 and 3 are part of the group, since 0 and 2 have no inverse. In general, a prime number is used as a modulus to ensure that each element has an inverse in modular arithmetic.
The operation of RSA is based on the discrete logarithm. To encrypt a message x
, it is raised to an exponent and a modulo n
is applied, resulting in a y-value
. The public key consists of the exponent and the prime number used as a modulus. Decryption is achieved using a secret number d
, which is the inverse of the key e
in modulo n
. This means that only whoever knows d
can revert the message to the original, guaranteeing security.
RSA is also used to create digital signatures, ensuring that a message comes from a legitimate source. Instead of using the public key to encrypt, the private key is used. The process begins by taking the message M
, applying a hash function, which produces a fixed-length, collision-resistant number. This hash is encrypted with the private key. To verify the signature, the encrypted hash is decompressed with the public key. If it matches the original hash, the signature is valid and the authenticity of the document is confirmed.
Electronic signatures are crucial in multiple areas, from software development to everyday transactions. For example:
Digital signatures provide a robust level of security, ensuring the integrity and authenticity of data in a digital environment. If you have additional examples of the use of electronic signatures in your professional or personal life, please share them to enrich the understanding of these technologies.
Contributions 3
Questions 0
Gracias
Want to see more contributions, questions and answers from the community?