You don't have access to this class

Keep learning! Join and start boosting your career

Aprovecha el precio especial y haz tu profesi贸n a prueba de IA

Antes: $249

Currency
$209
Suscr铆bete

Termina en:

0 D铆as
10 Hrs
24 Min
25 Seg

Apache Spark: transformaciones

9/25
Resources

How to create RDDs in Databricks?

We will explore how to generate RDDs (Resilient Distributed Datasets) using the Databricks platform to perform distributed data analysis efficiently. RDDs are the fundamental unit within Apache Spark, providing fault tolerance and efficiency in the execution of parallel operations.

How to import and configure a notebook in Databricks?

To start, make sure your cluster is active in Databricks by selecting the Platzi cluster or one you already have configured. Then, head to the Workspace section in Databricks, where you can import a notebook from your file system or a URL, such as from a GitHub repository.

  1. Importing a file:
    • Head to File and use drag-and-drop to load compatible files such as .dbc, .scala, .py, .sql, R, .ipynb, etc.
  2. Import from a URL:
    • If you have a notebook hosted in an online repository, you can import the notebook directly via its URL.

The example notebook, "What are Apache Spark RDDs Part 2?", will be available in the course resources. Once imported, attack your cluster to start running the code.

What are Spark Session and Spark Context?

Before proceeding to create RDDs, let's understand two essential concepts in Spark:

  • Spark Session: is the main access point for interacting with Spark, and facilitates command execution.
  • Spark Context: It allows direct communication with the Spark cluster, managing executions.

In Databricks, these components are already configured, eliminating the need to manually initialize Spark Session or Spark Context, optimizing the environment for the user.

How to create an RDD in Spark?

Creating an RDD can be done in different ways depending on your needs. In the following, we will explore how to create an empty RDD and a partitioned RDD:

# Create an empty RDDrdd_empty = sc.emptyRDD()
 # Create an RDD with three partitionsrdd_with_partitions = sc.parallelize([1, 2, 3, 4, 5], numSlices=3)
 # Collect and view partitionsprint(rdd_with_partitions.collect()) # Output: [1, 2, 3, 4, 5]print(rdd_with_partitions.getNumPartitions()) # Output: 3

In the example, parallelize is the function that distributes the data across partitions, allowing their parallel execution.

What are transformations and how to apply them to RDDs?

Transformations in Spark are operations that are applied to RDDs to generate new RDDs. These are lazy, meaning that they are not executed immediately until an action is performed that triggers them.

  1. Map and Filter:

    • Map: applies a function to each RDD element.

      rdd_mapped = rdd_with_partitions.map(lambda x: x * 2)print(rdd_mapped.collect()) # Output: [2, 4, 6, 8, 10].
    • Filter: filter the elements that meet a specific condition.

      rdd_filtering = rdd_with_partitions.filter(lambda x: x % 2 == 0)print(rdd_filtering.collect()) # Output: [2, 4]
  2. Distinct and ReduceByKey:

    • Distinct: Returns the unique elements of the RDD.

      rdd_unique = rdd_with_partitions.distinct()print(rdd_unique.collect()) # Output: [1, 2, 3, 4, 5].
    • ReduceByKey: Applies a reduce function to key-value pairs.

      rdd_pairs = sc.parallelize([('A', 3), ('B', 2), ('A', 2), ('B', 4)])rdd_reduced = rdd_pairs.reduceByKey(lambda a, b: a + b)print(rdd_reduced.collect()) # Output: [('A', 5), ('B', 6)]
  3. SortByKey:

    • Sorts the elements of an RDD based on their keys.
    rdd_ordered = rdd_pairs.sortByKey(ascending=False)print(rdd_ordered.collect()) # Output: [('B', 6), ('A', 5)]

What should we keep in mind when working with transformations?

Transformations such as map, filter, distinct, among others, are fundamental to modify and structure the data in an RDD. It is important to remember that all these operations generate new RDDs, since the original RDDs are immutable.

In summary, learning how to handle Databricks and Apache Spark efficiently allows us to take full advantage of their capabilities for large and complex data analysis in a distributed and fault-tolerant manner. Keep experimenting and expanding your skills with practice!

Contributions 4

Questions 2

Sort by:

Want to see more contributions, questions and answers from the community?

Me encanta el curso, creo que solo hace falta revisar los recursos de las clases, por ejemplo ya revis茅 todas clases y no encuentro la parte 1 del notebook: qu茅 son los RDD en apache Spark.
Convertir los datos a RDD (Resilient Distributed Dataset) es crucial en Apache Spark porque los RDDs son la estructura fundamental para el procesamiento de datos en paralelo. Al utilizar RDDs, se logra: 1. **Inmutabilidad**: Los RDDs son inmutables, lo que garantiza que los datos no se alteren una vez creados. Esto aumenta la seguridad y la consistencia de los datos. 2. **Tolerancia a fallos**: Ofrecen recuperaci贸n autom谩tica en caso de fallos, ya que mantienen la informaci贸n de c贸mo se generaron los datos. 3. **Distribuci贸n**: Permiten ejecutar operaciones en un cl煤ster de manera eficiente, aprovechando la capacidad de procesamiento distribuido. Esto facilita el an谩lisis y manipulaci贸n de grandes vol煤menes de datos de forma escalable en plataformas como Databricks.
SparkSession es la entrada principal para trabajar con Spark y encapsula toda la funcionalidad de Spark. Proporciona una interfaz unificada para m煤ltiples operaciones, permitiendo trabajar con DataFrames, Dataset y acceder a Spark SQL. Por otro lado, SparkContext es el contexto b谩sico para realizar operaciones con RDDs y conectar con el cl煤ster de Spark. Aunque SparkSession incluye SparkContext, este 煤ltimo se utiliza principalmente en aplicaciones que requieren RDDs. En Databricks, no es necesario crear expl铆citamente SparkSession o SparkContext, ya que est谩n preconfigurados.
Parallelizar los datos es fundamental en procesamiento de grandes vol煤menes de informaci贸n por varias razones: 1. **Rendimiento**: La paralelizaci贸n permite dividir las tareas entre m煤ltiples nodos, lo que acelera el tiempo de procesamiento. 2. **Escalabilidad**: Facilita el manejo de conjuntos de datos que crecen con el tiempo, permitiendo a帽adir m谩s recursos seg煤n sea necesario. 3. **Tolerancia a fallos**: Al distribuir los datos, se reduce el riesgo de p茅rdida de informaci贸n ante fallos en un 煤nico nodo. 4. **Eficiencia**: Las operaciones pueden ejecutarse simult谩neamente, optimizando el uso de recursos del cl煤ster. Utilizar funciones como `parallelize()` en Spark permite aprovechar estas ventajas en entornos distribuidos.