Introducción a ChatGPT
¿Por qué usar ChatGPT?
¿Cómo usar ChatGPT?
¿Cómo crear una cuenta gratis de ChatGPT?
¿Cómo pagar una membresía de ChatGPT Plus?
Quiz: Introducción a ChatGPT
¿Cómo usar ChatGPT de forma efectiva?
Cómo escribir textos de impacto con ChatGPT
Cómo usar prompting para obtener los mejores resultados de ChatGPT
Cómo adaptar ChatGPT a mi forma de trabajar con instrucciones personalizadas y memoria
Quiz: ¿Cómo usar ChatGPT de forma efectiva?
Uso de herramientas avanzadas en ChatGPT
Cómo usar la app móvil de ChatGPT para extraer información de fotos
Obtén información actualizada en ChatGPT con su búsqueda web
Cómo extraer información clave de documentos con ChatGPT
¿Es seguro usar ChatGPT?
Extraer fácilmente información de imágenes y fotos con ChatGPT (CLASE NUEVA)
Quiz: Uso de herramientas avanzadas en ChatGPT
Análisis de datos con ChatGPT
¿Cómo analizar datos con ChatGPT?
Limpieza de datos con ChatGPT
Analiza datos con ChatGPT: pago y pasarelas eficaces
GPTs y asistentes
Cómo usar ChatGPT en modo de voz para convertirlo en tu asistente personal
¿Para qué sirve generar imágenes con AI en el trabajo?
Creación de GPTs personalizados
Quiz: GPTs y asistentes
Más allá de ChatGPT
Nunca pares de aprender de ChatGPT
You don't have access to this class
Keep learning! Join and start boosting your career
As many users already know, ChatGPT is not designed to do mathematical calculations. Instead, it focuses on language manipulation. This is because it is a linguistic model, also known as a Large Language Model (LLM), trained primarily on texts. Although it has been exposed to mathematical texts, its specialty is not calculating, but predicting and generating the next word with the highest probability.
OpenAI, the company behind ChatGPT, has addressed this limitation by using its ability to generate text and trained it programmatically. This allows ChatGPT to run calculations using an ephemeral programming environment, similar to a calculator. Thus, you can perform data analysis by creating mini-programs that generate results based on the input provided.
In order for ChatGPT to analyze data, you must first provide it with the information. This process is straightforward:
For example, when loading a payment file, ChatGPT can identify the number of records and columns, and provide detailed descriptions.
Preliminary Analysis: ChatGPT can scan the contents of the files and provide a synopsis of the data. In doing so, it delivers a preview of the file and even highlights important data before processing everything.
Use of Python: Although users do not need to know Python, it is useful to understand that ChatGPT generates Python code to parse data. This code allows opening and reading the first few rows of the file, accurately describing its structure.
# Example of Python code generated by ChatGPT to inspect dataimport pandas as pd
# Load Excel filefile = pd.ExcelFile('file_path.xlsx')
# Read the first rows and display themdata = file.parse(sheet_name=file.sheet_names[0])print(data.head())
When ChatGPT is asked to analyze a specific column, such as the amount of payments, it can calculate relevant statistics:
These indicators provide insight into possible anomalies within the data set. For example, a high average combined with anomalies in small amounts points to inconsistencies that may require attention.
Thus, ChatGPT not only identifies, but also indicates how these irregularities could be corrected. This makes ChatGPT a powerful tool not only for data analysis, but also for cleaning and improving data sets in practical applications.
With this knowledge, users have the power to use ChatGPT to interpret and deduce valuable information from their data. Keep exploring and maximizing the potential of this tool as you continue your learning!
Contributions 26
Questions 5
Want to see more contributions, questions and answers from the community?