Adquiere por un año todos los cursos, escuelas y certificados por un precio especial.

Adquiere por un año todos los cursos, escuelas y certificados por un precio especial.

Antes:$249

Currency
$219/año
Paga en 4 cuotas sin intereses
Paga en 4 cuotas sin intereses
Comprar ahora

Termina en:

02h

06m

25s

2

Máquinas de vectores de soporte (clasificación y regresión)

Investigando me topé que en muchos blogs nombraban a las SVMs y la verdad no sabía que eran, aun tengo algún par de dudas sobre el tema, pero puede que le sirva a otros este material que recopilé así que lo comparto acá. espero les guste.(Cualquier contenido que puedan sumar agregenlo a los comentarios).
Que son?
Las máquinas de soporte vectorial, máquinas de vectores de soporte o máquinas de vector soporte (Support Vector Machines, SVMs) son un conjunto de algoritmos de aprendizaje supervisado desarrollados por Vladimir Vapnik y su equipo en los laboratorios AT&T.

Estos métodos están propiamente relacionados con problemas de clasificación y regresión. Dado un conjunto de ejemplos de entrenamiento (de muestras) podemos etiquetar las clases y entrenar una SVM para construir un modelo que prediga la clase de una nueva muestra. Intuitivamente, una SVM es un modelo que representa a los puntos de muestra en el espacio, separando las clases a 2 espacios lo más amplios posibles mediante un hiperplano de separación definido como el vector entre los 2 puntos, de las 2 clases, más cercanos al que se llama vector soporte. Cuando las nuevas muestras se ponen en correspondencia con dicho modelo, en función de los espacios a los que pertenezcan, pueden ser clasificadas a una o la otra clase.

Más formalmente, una SVM construye un hiperplano o conjunto de hiperplanos en un espacio de dimensionalidad muy alta (o incluso infinita) que puede ser utilizado en problemas de clasificación o regresión. Una buena separación entre las clases permitirá una clasificación correcta.

Cual es la idea principal?

Dado un conjunto de puntos, subconjunto de un conjunto mayor (espacio), en el que cada uno de ellos pertenece a una de dos posibles categorías, un algoritmo basado en SVM construye un modelo capaz de predecir si un punto nuevo (cuya categoría desconocemos) pertenece a una categoría o a la otra.

Como en la mayoría de los métodos de clasificación supervisada, los datos de entrada (los puntos) son vistos como un vector p-dimensional (una lista ordenada de p números).

La SVM busca un hiperplano que separe de forma óptima a los puntos de una clase de la de otra, que eventualmente han podido ser previamente proyectados a un espacio de dimensionalidad superior.

En ese concepto de “separación óptima” es donde reside la característica fundamental de las SVM: este tipo de algoritmos buscan el hiperplano que tenga la máxima distancia (margen) con los puntos que estén más cerca de él mismo. Por eso también a veces se les conoce a las SVM como clasificadores de margen máximo. De esta forma, los puntos del vector que son etiquetados con una categoría estarán a un lado del hiperplano y los casos que se encuentren en la otra categoría estarán al otro lado.

Los algoritmos SVM pertenecen a la familia de los clasificadores lineales. También pueden ser considerados un caso especial de la regularización de Tikhonov.

En la literatura de los SVMs, se llama atributo a la variable predictora y característica a un atributo transformado que es usado para definir el hiperplano. La elección de la representación más adecuada del universo estudiado, se realiza mediante un proceso denominado selección de características.

Al vector formado por los puntos más cercanos al hiperplano se le llama vector de soporte.

Los modelos basados en SVMs están estrechamente relacionados con las redes neuronales. Usando una función kernel, resultan un método de entrenamiento alternativo para clasificadores polinomiales, funciones de base radial y perceptrón multicapa.

para profundizar:

Escribe tu comentario
+ 2