CursosEmpresasBlogLiveConfPrecios

Evaluando resultados de K-means

Clase 9 de 27 • Curso de Clustering con Python y scikit-learn

Clase anteriorSiguiente clase

Contenido del curso

Fundamentos de clustering

  • 1
    ¿Qué es el clustering en machine learning?

    ¿Qué es el clustering en machine learning?

    04:01 min
  • 2
    Tu primer clustering con scikit-learn

    Tu primer clustering con scikit-learn

    16:57 min
  • 3
    ¿Cuándo usar clustering?

    ¿Cuándo usar clustering?

    05:00 min
  • 4
    ¿Cómo evaluar modelos de clustering?

    ¿Cómo evaluar modelos de clustering?

    12:00 min

K-means

  • 5
    ¿Qué es el algoritmo de K-means y cómo funciona?

    ¿Qué es el algoritmo de K-means y cómo funciona?

    07:30 min
  • 6
    ¿Cuándo usar K-means?

    ¿Cuándo usar K-means?

    03:24 min
  • 7
    Implementando K-means

    Implementando K-means

    14:08 min
  • 8
    Encontrando K

    Encontrando K

    13:06 min
  • 9
    Evaluando resultados de K-means

    Evaluando resultados de K-means

    Viendo ahora

Hierarchical clustering

  • 10
    ¿Qué es hierarchical clustering y cómo funciona?

    ¿Qué es hierarchical clustering y cómo funciona?

    04:56 min
  • 11
    ¿Cuándo usar hierarchical clustering?

    ¿Cuándo usar hierarchical clustering?

    02:07 min
  • 12
    Implementando hierarchical clustering

    Implementando hierarchical clustering

    09:40 min
  • 13
    Evaluando resultados de hierarchical clustering

    Evaluando resultados de hierarchical clustering

    06:44 min

DBSCAN

  • 14
    ¿Qué es DBSCAN y cómo funciona?

    ¿Qué es DBSCAN y cómo funciona?

    08:27 min
  • 15
    ¿Cuándo usar DBSCAN?

    ¿Cuándo usar DBSCAN?

    02:28 min
  • 16
    Implementando DBSCAN

    Implementando DBSCAN

    09:11 min
  • 17
    Encontrar híper-parámetros

    Encontrar híper-parámetros

    14:33 min
  • 18
    Evaluando resultados de DBSCAN

    Evaluando resultados de DBSCAN

    07:35 min

Proyecto: resolviendo un problema con clustering

  • 19
    Preparar datos para clusterizar

    Preparar datos para clusterizar

    13:30 min
  • 20
    Aplicando PCA para clustering

    Aplicando PCA para clustering

    12:08 min
  • 21
    Resolviendo con K-means

    Resolviendo con K-means

    09:24 min
  • 22
    Resolviendo con hierarchical clustering

    Resolviendo con hierarchical clustering

    07:12 min
  • 23
    Resolviendo con DBSCAN

    Resolviendo con DBSCAN

    17:25 min
  • 24
    Resolviendo con DBSCAN (sin PCA)

    Resolviendo con DBSCAN (sin PCA)

    05:24 min
  • 25
    Evaluación resultados de distintos modelos de clustering

    Evaluación resultados de distintos modelos de clustering

    10:47 min

Conclusiones

  • 26
    Proyecto final y cierre

    Proyecto final y cierre

    02:32 min
  • 27

    Comparte tu proyecto de segmentación con clustering y certifícate

    Brayam Esparza

    Brayam Esparza

    student•
    hace 3 años

    para ver el score :

    plt.figure(figsize=(8,8)) km = KMeans(n_clusters=4) visualizer = SilhouetteVisualizer(km, colors='yellowbrick') visualizer.fit(X) yc4 = km.predict(X) print(silhouette_score(X,yc4))
      Gabriel Villanueva Vega

      Gabriel Villanueva Vega

      student•
      hace 3 años

      Hola amigo, tengo una consulta sobre tu código, porque es que cambia el gráfico de la silueta si solo le agregaste el predict al final?

      andrea Parra Tapia

      andrea Parra Tapia

      student•
      hace 2 años

      Gabriel Villanueva Vega, Brayam Esparza agregó el predict para evaluar el coeficiente de Silhouette en el gráfico Slds Andrea

    Carlos Mazzaroli

    Carlos Mazzaroli

    student•
    hace 3 años

    si les sale findfont: generic family 'sans-serif' not found usen el quick method, ahi ya no les sale el mensaje al importar SilhouetteVisualizer

    from yellowbrick.cluster.silhouette import silhouette_visualizer silhouette_visualizer(km,x,colors='yellowbrick');
      Juan R. Vergara M.

      Juan R. Vergara M.

      student•
      hace 2 años

      Gracias por el aporte.

      Julián Cárdenas

      Julián Cárdenas

      student•
      hace 2 años

      Buen aporte, gracias compañero!

    Juan Acevedo

    Juan Acevedo

    student•
    hace 3 meses

    <por si les sirve de algo para comparar en cada grafica y mirar el coeficiente a su vez

    Mario Alexander Vargas Celis

    Mario Alexander Vargas Celis

    student•
    hace 4 meses

    Una vez que ejecutas el algoritmo K-Means y encuentras el valor óptimo de K, es fundamental evaluar los resultados para asegurarte de que los clusters tengan sentido. Aquí tienes formas efectivas de evaluar K-Means:

    ✅ 1. Silhouette Score (Evaluación numérica)

    ¿Qué mide?

    • Qué tan bien separados y cohesivos están los clusters.
    • Va de -1 (malo) a +1 (muy bueno).

    Código:

    from sklearn.metrics import silhouette_score

    # Asumiendo que ya tienes X (datos) y kmeans.labels\_ (etiquetas) score = silhouette_score(X, kmeans.labels_) print(f"Silhouette Score: {score:.3f}")

    ✅ Un score cerca de 1 es excelente. Cerca de 0 indica clusters solapados. Negativo es mal clustering.

    ✅ 2. Visualización de Clusters (2D)

    ¿Para qué sirve?

    • Visualmente valida si los grupos son distinguibles.
    • Solo se puede usar si tienes 2 o 3 dimensiones, o aplicas reducción como PCA.

    Código:

    import matplotlib.pyplot as plt

    # Asumiendo que usaste kmeans = KMeans(n_clusters=k) plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_, cmap='viridis') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red', marker='X', label='Centroides') plt.title("Visualización de Clusters K-Means") plt.legend() plt.show()

    ✅ 3. Matriz de confusión (si tienes etiquetas reales)

    Si estás haciendo clustering sobre datos etiquetados (supervisado), puedes evaluar con exactitud y métricas de clasificación:

    from sklearn.metrics import confusion_matrix import seaborn as sns

    # Supongamos que tienes y_true (etiquetas reales) y y_pred (kmeans.labels_) sns.heatmap(confusion_matrix(y_true, kmeans.labels_), annot=True, fmt="d", cmap="Blues") plt.xlabel("Etiquetas de KMeans") plt.ylabel("Etiquetas Reales") plt.title("Matriz de Confusión") plt.show()

    ✅ 4. Silhouette Visualizer (Yellowbrick - opcional)

    from yellowbrick.cluster import SilhouetteVisualizer

    model = KMeans(n_clusters=k, random_state=42) visualizer = SilhouetteVisualizer(model) visualizer.fit(X) visualizer.show()

    📌 Esto muestra la forma y consistencia de cada cluster.

    ✅ 5. Comparación Intra vs Inter Clúster

    • Intra-cluster distance: qué tan compactos son los puntos de cada cluster.
    • Inter-cluster distance: qué tan separados están los centroides.

    Si lo deseas, puedo ayudarte a programar un pequeño análisis de estas métricas.

    Antonio Demarco Bonino

    Antonio Demarco Bonino

    student•
    hace un año

    Me encantó K-means. Ahora a seguirle metiendo al código.

Escuelas

  • Desarrollo Web
    • Fundamentos del Desarrollo Web Profesional
    • Diseño y Desarrollo Frontend
    • Desarrollo Frontend con JavaScript
    • Desarrollo Frontend con Vue.js
    • Desarrollo Frontend con Angular
    • Desarrollo Frontend con React.js
    • Desarrollo Backend con Node.js
    • Desarrollo Backend con Python
    • Desarrollo Backend con Java
    • Desarrollo Backend con PHP
    • Desarrollo Backend con Ruby
    • Bases de Datos para Web
    • Seguridad Web & API
    • Testing Automatizado y QA para Web
    • Arquitecturas Web Modernas y Escalabilidad
    • DevOps y Cloud para Desarrolladores Web
  • English Academy
    • Inglés Básico A1
    • Inglés Básico A2
    • Inglés Intermedio B1
    • Inglés Intermedio Alto B2
    • Inglés Avanzado C1
    • Inglés para Propósitos Específicos
    • Inglés de Negocios
  • Marketing Digital
    • Fundamentos de Marketing Digital
    • Marketing de Contenidos y Redacción Persuasiva
    • SEO y Posicionamiento Web
    • Social Media Marketing y Community Management
    • Publicidad Digital y Paid Media
    • Analítica Digital y Optimización (CRO)
    • Estrategia de Marketing y Growth
    • Marketing de Marca y Comunicación Estratégica
    • Marketing para E-commerce
    • Marketing B2B
    • Inteligencia Artificial Aplicada al Marketing
    • Automatización del Marketing
    • Marca Personal y Marketing Freelance
    • Ventas y Experiencia del Cliente
    • Creación de Contenido para Redes Sociales
  • Inteligencia Artificial y Data Science
    • Fundamentos de Data Science y AI
    • Análisis y Visualización de Datos
    • Machine Learning y Deep Learning
    • Data Engineer
    • Inteligencia Artificial para la Productividad
    • Desarrollo de Aplicaciones con IA
    • AI Software Engineer
  • Ciberseguridad
    • Fundamentos de Ciberseguridad
    • Hacking Ético y Pentesting (Red Team)
    • Análisis de Malware e Ingeniería Forense
    • Seguridad Defensiva y Cumplimiento (Blue Team)
    • Ciberseguridad Estratégica
  • Liderazgo y Habilidades Blandas
    • Fundamentos de Habilidades Profesionales
    • Liderazgo y Gestión de Equipos
    • Comunicación Avanzada y Oratoria
    • Negociación y Resolución de Conflictos
    • Inteligencia Emocional y Autogestión
    • Productividad y Herramientas Digitales
    • Gestión de Proyectos y Metodologías Ágiles
    • Desarrollo de Carrera y Marca Personal
    • Diversidad, Inclusión y Entorno Laboral Saludable
    • Filosofía y Estrategia para Líderes
  • Diseño de Producto y UX
    • Fundamentos de Diseño UX/UI
    • Investigación de Usuarios (UX Research)
    • Arquitectura de Información y Usabilidad
    • Diseño de Interfaces y Prototipado (UI Design)
    • Sistemas de Diseño y DesignOps
    • Redacción UX (UX Writing)
    • Creatividad e Innovación en Diseño
    • Diseño Accesible e Inclusivo
    • Diseño Asistido por Inteligencia Artificial
    • Gestión de Producto y Liderazgo en Diseño
    • Diseño de Interacciones Emergentes (VUI/VR)
    • Desarrollo Web para Diseñadores
    • Diseño y Prototipado No-Code
  • Contenido Audiovisual
    • Fundamentos de Producción Audiovisual
    • Producción de Video para Plataformas Digitales
    • Producción de Audio y Podcast
    • Fotografía y Diseño Gráfico para Contenido Digital
    • Motion Graphics y Animación
    • Contenido Interactivo y Realidad Aumentada
    • Estrategia, Marketing y Monetización de Contenidos
  • Desarrollo Móvil
    • Fundamentos de Desarrollo Móvil
    • Desarrollo Nativo Android con Kotlin
    • Desarrollo Nativo iOS con Swift
    • Desarrollo Multiplataforma con React Native
    • Desarrollo Multiplataforma con Flutter
    • Arquitectura y Patrones de Diseño Móvil
    • Integración de APIs y Persistencia Móvil
    • Testing y Despliegue en Móvil
    • Diseño UX/UI para Móviles
  • Diseño Gráfico y Arte Digital
    • Fundamentos del Diseño Gráfico y Digital
    • Diseño de Identidad Visual y Branding
    • Ilustración Digital y Arte Conceptual
    • Diseño Editorial y de Empaques
    • Motion Graphics y Animación 3D
    • Diseño Gráfico Asistido por Inteligencia Artificial
    • Creatividad e Innovación en Diseño
  • Programación
    • Fundamentos de Programación e Ingeniería de Software
    • Herramientas de IA para el trabajo
    • Matemáticas para Programación
    • Programación con Python
    • Programación con JavaScript
    • Programación con TypeScript
    • Programación Orientada a Objetos con Java
    • Desarrollo con C# y .NET
    • Programación con PHP
    • Programación con Go y Rust
    • Programación Móvil con Swift y Kotlin
    • Programación con C y C++
    • Administración Básica de Servidores Linux
  • Negocios
    • Fundamentos de Negocios y Emprendimiento
    • Estrategia y Crecimiento Empresarial
    • Finanzas Personales y Corporativas
    • Inversión en Mercados Financieros
    • Ventas, CRM y Experiencia del Cliente
    • Operaciones, Logística y E-commerce
    • Gestión de Proyectos y Metodologías Ágiles
    • Aspectos Legales y Cumplimiento
    • Habilidades Directivas y Crecimiento Profesional
    • Diversidad e Inclusión en el Entorno Laboral
    • Herramientas Digitales y Automatización para Negocios
  • Blockchain y Web3
    • Fundamentos de Blockchain y Web3
    • Desarrollo de Smart Contracts y dApps
    • Finanzas Descentralizadas (DeFi)
    • NFTs y Economía de Creadores
    • Seguridad Blockchain
    • Ecosistemas Blockchain Alternativos (No-EVM)
    • Producto, Marketing y Legal en Web3
  • Recursos Humanos
    • Fundamentos y Cultura Organizacional en RRHH
    • Atracción y Selección de Talento
    • Cultura y Employee Experience
    • Gestión y Desarrollo de Talento
    • Desarrollo y Evaluación de Liderazgo
    • Diversidad, Equidad e Inclusión
    • AI y Automatización en Recursos Humanos
    • Tecnología y Automatización en RRHH
  • Finanzas e Inversiones
    • Fundamentos de Finanzas Personales y Corporativas
    • Análisis y Valoración Financiera
    • Inversión y Mercados de Capitales
    • Finanzas Descentralizadas (DeFi) y Criptoactivos
    • Finanzas y Estrategia para Startups
    • Inteligencia Artificial Aplicada a Finanzas
    • Domina Excel
    • Financial Analyst
    • Conseguir trabajo en Finanzas e Inversiones
  • Startups
    • Fundamentos y Validación de Ideas
    • Estrategia de Negocio y Product-Market Fit
    • Desarrollo de Producto y Operaciones Lean
    • Finanzas, Legal y Fundraising
    • Marketing, Ventas y Growth para Startups
    • Cultura, Talento y Liderazgo
    • Finanzas y Operaciones en Ecommerce
    • Startups Web3 y Blockchain
    • Startups con Impacto Social
    • Expansión y Ecosistema Startup
  • Cloud Computing y DevOps
    • Fundamentos de Cloud y DevOps
    • Administración de Servidores Linux
    • Contenerización y Orquestación
    • Infraestructura como Código (IaC) y CI/CD
    • Amazon Web Services
    • Microsoft Azure
    • Serverless y Observabilidad
    • Certificaciones Cloud (Preparación)
    • Plataforma Cloud GCP

Platzi y comunidad

  • Platzi Business
  • Live Classes
  • Lanzamientos
  • Executive Program
  • Trabaja con nosotros
  • Podcast

Recursos

  • Manual de Marca

Soporte

  • Preguntas Frecuentes
  • Contáctanos

Legal

  • Términos y Condiciones
  • Privacidad
  • Tyc promociones
Reconocimientos
Reconocimientos
Logo reconocimientoTop 40 Mejores EdTech del mundo · 2024
Logo reconocimientoPrimera Startup Latina admitida en YC · 2014
Logo reconocimientoPrimera Startup EdTech · 2018
Logo reconocimientoCEO Ganador Medalla por la Educación T4 & HP · 2024
Logo reconocimientoCEO Mejor Emprendedor del año · 2024
De LATAM conpara el mundo
YoutubeInstagramLinkedInTikTokFacebookX (Twitter)Threads