Gráficas de dispersión e histogramas.
Clase 14 de 35 • Curso de Fundamentos de R
Contenido del curso
- 13

Qué es EDA: Exploratory Data Analysis
04:46 - 14

Gráficas de dispersión e histogramas.
04:31 - 15

Box Plot y su interpretación
07:08 - 16

EDA con dataset proyecto - Gráficas de dispersión.
08:09 - 17

EDA con histogramas.
10:37 - 18

EDA con dataset proyecto - histogramas - ggplot2
07:20 - 19

EDA con box plot- ggplot2
11:29 - 20

EDA con dataset proyecto - box plot- ggplot2 - dplyr
11:36 - 21

EDA con gráficas de dispersión con más de dos variables - ggplot2
07:48 - 22

EDA con dataset proyecto usando gráficas de dispersión con más de dos variables - ggplot2 - plotly
10:41
- 23

Buscando correlaciones con pairs
13:49 - 24

Confirmando correlaciones con la función cor
05:08 - 25

Buscando correlaciones con pairs en dataset proyecto
07:20 - 26

Confirmando correlaciones con la función cor en dataset proyecto.
07:35 - 27

Protegiéndonos de los peligros del promedio.
08:02 - 28

Eliminando los NA's para hacer los cálculos.
08:01 - 29

Estadística y visualización aplicada a análisis de datos de mercadeo.
01:45
Existen varios tipos de gráficas para visualizar la información al momento de hacer EDA:
- Histograma: sirve para ver la distribución de las frecuencias de una variable, es diferente a la gráfica de barras.
- Gráfica de dispersión: los ejes solamente pueden ser valores numéricos y los puntos no se pueden unir.
- Box plot: nos muestra elementos como el mínimo, el máximo, el primer cuartil, la mediana y el tercer cuartil.