Caminos y Ciclos Hamiltonianos en Grafos
Clase 20 de 40 • Curso de Matemáticas Discretas
Contenido del curso
- 2

Lógica Proposicional: Conceptos y Aplicaciones Básicas
08:12 - 3

Tablas de verdad y conectores lógicos: conjunción, disyunción y más
09:00 - 4

Construcción de Tablas de Verdad para Proposiciones Compuestas
07:37 - 5

Construcción de Tablas de Verdad para Proposiciones Lógicas
11:30 - 6

Tablas de Verdad y Análisis de Proposiciones Lógicas
07:14 - 7

Circuitos Lógicos: Representación y Función en Electrónica
07:17 - 8

Circuitos Lógicos para Proposiciones Compuestas
06:33 - 9
Tablas y Circuitos Lógicos: Ejercicios Prácticos
00:27
- 10

Conjuntos: Definición, Pertenencia y Representación Matemática
08:20 - 11

Conjuntos: Nulo, Unitario y Universal y Operaciones Básicas
09:03 - 12

Representación Gráfica de Operaciones entre Conjuntos
07:16 - 13

Propiedades de los Conjuntos: Leyes de De Morgan y Representación Gráfica
06:28 - 14

Representación gráfica de las leyes de De Morgan
03:57 - 15

Operaciones y Propiedades de Conjuntos: Ejercicio Práctico Resuelto
10:33 - 16
Operaciones Básicas con Conjuntos y Problemas de Conjuntos
01:20
- 17

Teoría de Gráficas: Conceptos y Aplicaciones Prácticas
07:59 - 18

Grado de Vértices y Conexiones en Gráficas Simples
07:17 - 19

Caminos y ciclos eulerianos en grafos: teoría y aplicación
04:01 - 20

Caminos y Ciclos Hamiltonianos en Grafos
05:28 - 21

Construcción de Matrices de Adyacencia para Representar Grafos
08:32 - 22

Representación de Grafos con Matriz de Incidencia
06:34 - 23

Matrices de Adyacencia en Grafos Dirigidos
09:14 - 24
Análisis de Caminos y Ciclos Eulerianos en Grafos
00:49
- 25

Árboles y Tipos de Árboles en Matemáticas Discretas
02:11 - 26

Estructuras de Árboles en Programación y Jerarquías de Datos
10:31 - 27

Conceptos Básicos de Estructuras de Árboles en Informática
05:59 - 28

Árbol de Expansión Mínima: Conexión Óptima de Nodos
06:40 - 29

Tipos de Árboles Binarios y sus Características
05:31 - 30

Recorridos de Árboles: Preorden, Inorden y Posorden
11:27 - 31

Árboles Binarios para Expresiones Aritméticas
12:33 - 32

Transformación de Expresiones Aritméticas en Árboles Binarios
07:14 - 33
Árboles: Altura, Niveles y Recorridos Ordenados
00:56
- 34

Algoritmo de Prim: Árbol de Expansión Mínimo en Grafos
11:01 - 35

Algoritmo de Dijkstra: Ruta Óptima y Coste Mínimo
09:57 - 36

Algoritmo de Kruskal
08:30 - 37

Algoritmo de Flury: Encontrar Ciclos Eulerianos en Grafos
09:41 - 38

Algoritmo de Flujo Máximo en Redes Dirigidas
13:09 - 39
Algoritmos de Grafos: Prim, Dijkstra, Kruskal y Fleury
00:23
A diferencia de los caminos y ciclos eulerianos, los caminos y ciclos hamiltonianos buscaran recorrer los nodos una sola vez sin importar el camino que utilicemos.
Para afirmar que hay un camino hamiltoniano se debe cumplir la condición donde la suma del grado de dos vértices es mayor o igual al número de vértices menos uno, de otra forma puede que exista el camino hamiltoniano, pero no se podrá afirmar.
Si hay un camino hamiltoniano, pero no un ciclo, entonces el grafo no es hamiltoniano.