Lógica Proposicional: Conceptos y Aplicaciones Básicas
Clase 2 de 40 • Curso de Matemáticas Discretas
Contenido del curso
- 2

Lógica Proposicional: Conceptos y Aplicaciones Básicas
08:12 - 3

Tablas de verdad y conectores lógicos: conjunción, disyunción y más
09:00 - 4

Construcción de Tablas de Verdad para Proposiciones Compuestas
07:37 - 5

Construcción de Tablas de Verdad para Proposiciones Lógicas
11:30 - 6

Tablas de Verdad y Análisis de Proposiciones Lógicas
07:14 - 7

Circuitos Lógicos: Representación y Función en Electrónica
07:17 - 8

Circuitos Lógicos para Proposiciones Compuestas
06:33 - 9
Tablas y Circuitos Lógicos: Ejercicios Prácticos
00:27
- 10

Conjuntos: Definición, Pertenencia y Representación Matemática
08:20 - 11

Conjuntos: Nulo, Unitario y Universal y Operaciones Básicas
09:03 - 12

Representación Gráfica de Operaciones entre Conjuntos
07:16 - 13

Propiedades de los Conjuntos: Leyes de De Morgan y Representación Gráfica
06:28 - 14

Representación gráfica de las leyes de De Morgan
03:57 - 15

Operaciones y Propiedades de Conjuntos: Ejercicio Práctico Resuelto
10:33 - 16
Operaciones Básicas con Conjuntos y Problemas de Conjuntos
01:20
- 17

Teoría de Gráficas: Conceptos y Aplicaciones Prácticas
07:59 - 18

Grado de Vértices y Conexiones en Gráficas Simples
07:17 - 19

Caminos y ciclos eulerianos en grafos: teoría y aplicación
04:01 - 20

Caminos y Ciclos Hamiltonianos en Grafos
05:28 - 21

Construcción de Matrices de Adyacencia para Representar Grafos
08:32 - 22

Representación de Grafos con Matriz de Incidencia
06:34 - 23

Matrices de Adyacencia en Grafos Dirigidos
09:14 - 24
Análisis de Caminos y Ciclos Eulerianos en Grafos
00:49
- 25

Árboles y Tipos de Árboles en Matemáticas Discretas
02:11 - 26

Estructuras de Árboles en Programación y Jerarquías de Datos
10:31 - 27

Conceptos Básicos de Estructuras de Árboles en Informática
05:59 - 28

Árbol de Expansión Mínima: Conexión Óptima de Nodos
06:40 - 29

Tipos de Árboles Binarios y sus Características
05:31 - 30

Recorridos de Árboles: Preorden, Inorden y Posorden
11:27 - 31

Árboles Binarios para Expresiones Aritméticas
12:33 - 32

Transformación de Expresiones Aritméticas en Árboles Binarios
07:14 - 33
Árboles: Altura, Niveles y Recorridos Ordenados
00:56
- 34

Algoritmo de Prim: Árbol de Expansión Mínimo en Grafos
11:01 - 35

Algoritmo de Dijkstra: Ruta Óptima y Coste Mínimo
09:57 - 36

Algoritmo de Kruskal
08:30 - 37

Algoritmo de Flury: Encontrar Ciclos Eulerianos en Grafos
09:41 - 38

Algoritmo de Flujo Máximo en Redes Dirigidas
13:09 - 39
Algoritmos de Grafos: Prim, Dijkstra, Kruskal y Fleury
00:23
¿Qué es la lógica?
Es todo lo que tu cerebro piensa con base a lo que para ti es coherente, está estructurado y tiene sentido.
En este curso nos vamos a centrar en la lógica proposicional, que como su nombre lo indica se basa en proposiciones o afirmaciones.
¿Qué es una proposición o afirmación?
No es más que una sentencia, oración o enunciado al cual le puedes dar algún de verdadero o falso. Ni las pregunta, las órdenes y los deseos contaran como proposiciones.
En la lógica proposicional, nos interesa saber la relación que hay entre estas.
Existen dos tipos de proposiciones, las simples y las compuestas:
- Las proposiciones simples tienen un valor de verdadero o falso, son representadas por la letra p, q, r, s, t.
- Las proposiciones compuestas como su nombre lo indica están compuestas por proposiciones simples. Estas proposiciones necesitan conectores lógicos para unir las diferentes proposiciones simples que la integren.
Existen múltiples conectores lógicos, entre ellos se encuentran la conjunción, disyunción, implicación, equivalencia y negación.