- 1
Este curso tiene una versión actualizada
00:04 - 2

Álgebra Lineal para Análisis de Datos y Algoritmos
02:35 - 3
Instalación y Uso de Anaconda para Data Science con Python
03:02 - 4

Uso de Jupyter Notebook para Análisis de Datos Reproducibles
07:51 - 5

Elementos Básicos de Álgebra Lineal en Python: Escalares a Tensores
11:10
Comprobación gráfica de sistemas de ecuaciones lineales
Clase 13 de 29 • Curso de Fundamentos de Álgebra Lineal con Python
Contenido del curso
- 9

Producto Interno: Definición y Ejemplos Prácticos
05:06 - 10

Producto Interno entre Dos Matrices: Definición y Cálculo
04:49 - 11

Propiedades del Producto Interno en Álgebra Lineal
08:16 - 12

Transposición y Producto Interno de Matrices
03:02 - 13

Comprobación gráfica de sistemas de ecuaciones lineales
11:44 - 14

Matrices Identidad, Inversa y Singular: Propiedades y Cálculo
08:36 - 15

Solución de Sistemas Lineales usando la Inversa de una Matriz
07:47
- 16

Sistemas de Ecuaciones: Soluciones Únicas, Múltiples o Ninguna
10:04 - 17

Visualización de Vectores y Funciones Reutilizables en Python
08:35 - 18

Combinaciones Lineales de Vectores: Concepto y Aplicaciones Prácticas
08:51 - 19

Combinaciones Lineales y Espacios Vectoriales en R2 y R3
10:38 - 20

Relación entre combinaciones lineales y sistemas de ecuaciones lineales
07:57 - 21

Matrices y Dependencia Lineal en Sistemas de Ecuaciones
07:30
En esta clase aprenderemos cómo plantear un sistema de ecuaciones de forma matricial y realizar el proceso para comprobar su solución. Al final nos preguntaremos si existe una operación o elemento para realizar la **división **entre matrices para obtener la solución de un sistema de ecuaciones.